## A Survey of the Commercial Application of Bactericides in the Florida Citrus Industry

## Citrus Research and Development Foundation Report January, 2019

#### Overview

At the direction of the Citrus Research and Development Foundation's (CRDF) Commercial Product and Delivery committee, the CRDF staff began an extensive survey of the commercial use of bactericides in Florida citrus. Four variables were assessed, viz. fruit yield (kg/tree), fruit drop (%), visual disease index score (DI) and PCR analysis of HLB infection (i.e. cycle threshold count; CT), and. Data were collected over two production seasons (2016/2017 and 2017/2018).

Volunteer grower cooperators within the citrus industry were identified and informed of the proposed project details. CRDF staff approached growers in the three defined production regions of the state; Central Ridge, Indian River, and Southwest Florida. CRDF staff collected data from a total of 48 cooperator locations (Table 1). Participating sites represent multiple growers, in some cases multiple sites per grower, along with a variety of rootstocks, scions and a range of tree ages.

### **Survey Methods**

### Trial Layout

Two trial design layouts were implemented at the discretion of the cooperator location (single and double block layout; Figure 1). Choice of bactericide products, timing, dosage, number of applications, and tank mix protocol including choice of adjuvants, were left to the discretion of each cooperator. Thus, within the label guidelines, the bactericide "treatment" category was not standardized and could have been variable from location to location.

For the single block design, a selected number of rows (typically 4 rows) were identified to remain untreated with bactericides (Control). The remainder of the rows in the block received bactericide application. Twenty sentinel trees for monitoring and data collection were identified in the two middle rows of the four untreated rows. In addition, twenty sentinel trees were identified in two nearby rows which received bactericide applications (Treated). The treated rows with the twenty sentinel trees, were within ten rows of the four untreated rows (Figure 1). For the two block design, two adjacent blocks with same scion x rootstock combination and planting date were selected. One block received bactericide applications (Treated) and the other block remained untreated (Control; Figure 1). Twenty sentinel trees in both blocks were selected for monitoring and data collection. Within both trial designs, the sentinel trees were selected for uniformity by visual evaluation. The twenty trees in each category (treated or untreated) were set up in four groups of five trees. The location of the each grouping was determined by the number of viable trees available and the characteristics of the block. Efforts were made to place each group of treated trees within the same position in the row as the corresponding untreated group.

#### Data Collection

Yield was calculated by the total weight of fruit harvested from individual sentinel trees. Monthly fruit drop counts began in August for grapefruit and Hamlin trials, October for Midsweet trials, and December for Valencia trials. Regardless of scion, the fruit drop counts continued on a monthly basis until the trials were harvested. The weight of a fifty-fruit subsample was measured from each sentinel tree. The total yield per tree was compared to the weight of the fifty-fruit subsample to estimate the

number of fruit per tree. The total number of dropped fruit was calculated from the monthly fruit drop evaluation. Using the estimated number of fruit per tree and the total number of dropped fruit, the percentage of fruit dropped prior to harvest was calculated.

Evaluation of disease severity (Disease Index Score; DI) and PCR assay results (Cycle Threshold Value; CT) were collected throughout the two growing seasons. Within the growing season, most locations had multiple measurements, which were averaged for final analysis. Disease severity (DI) was assessed by a protocol involving subjective scoring of individual trees. The tree was assessed on each side with sides divided into four quadrants. Within individual canopy quadrant, a score was entered based on visual disease severity (0 to 5 scale). A score of 0 would indicate there are no visual HLB symptoms and a score of 5 would indicate symptoms throughout. Results were reported as the sum of the scores for the eight quadrants. The maximum score one side of a tree can receive is 20 and the maximum score the entire tree could receive is 40 (totally symptomatic).

Real time PCR analysis for HLB infection was conducted by a commercial laboratory (Southern Gardens Diagnostic Laboratory, Clewiston, FL). A positive reaction is detected by accumulation of a fluorescent signal. The CT value (cycle threshold) is defined as the number of cycles required to achieve a fluorescent signal, therefore, a lower CT value would indicate a greater level of infection. In the Florida citrus industry, a CT value < 32 is generally considered an infected tree, although any CT value < 40 indicates some level of infection.

#### Statistical Analysis

Groups of 5 trees (replicate plot) at each trial site were nested within treatments (control vs. treated); hence the experiment design was a completely randomized design. The analysis was performed on plot averages. For trial sites with two-year data, trial site, treatment, year and all interactions served as fixed effects. For sites for which there were only single-year data available (i.e. only Year 1 or Year 2) the model was simplified to include trial site, treatment, and the two-way interaction as fixed effects. To account for potential correlation of the residuals for the two-year data sets (repeated measures design), we modeled the residual variance using a compound symmetric model (CSH) with heterogeneous variances. For two time points, these models are equivalent to the unstructured variance (UN) and first order autoregressive (ARH(1)) models. Based on the AICC fit statistic, the CSH did not offer any improvement over the split-plot in time model, which assumes independence of residuals. Least squares means were calculated and compared using simple t-tests. No adjustments for multiple comparisons were made based on the arguments put forth by Saville (2018); this lack of adjustments in essence makes it easier to detect differences among treatments.

#### **Results**

### Fruit Yield and Fruit Drop – Two Year Data

There were 16 locations with yield data from both harvest seasons (Table 2). For these locations, there was a tendency (P = 0.11) for bactericide application to reduce fruit yield (63 vs. 60 kg/tree for Control and Treated trees, respectively; SEM = 1.3); however, there was a location x treatment x year interaction (P = 0.004; Table 2). Grapefruit 3/Year1 and Grapefruit 7/Year 2 (Indian River) experienced an average of 34% greater ( $P \le 0.061$ ) yield when treated with bactericides. In contrast, Hamlin 4/both years (Indian River) and Valencia 38/Year1 (Ridge) experienced an average of 18% less ( $P \le 0.082$ ) yield when treated with bactericides.

For fruit drop, there were 11 locations with fruit drop data from both harvest seasons (Table 3). For these locations, there was no effect (P=0.84) of bactericide application on fruit drop (33 vs. 33 % for Control and Treated trees, respectively; SEM = 1.0); however, there was a location x treatment x year interaction (P=0.009; Table 3). Grapefruit 1 and 3 (Year 1; Indian River) experienced an average of 28% less ( $P\le0.024$ ) fruit drop when treated with bactericides. In contrast, in Year 2, Grapefruit 1 (Indian River) experienced a 23% greater (P=0.012) fruit drop when treated with bactericides.

## <u>Yield - Single Year Data</u>

There were 15 locations with yield data from Year 1 only (Table 4). For these locations, bactericide application resulted in reduced (P = 0.035) fruit yield (80 vs. 72 kg/tree for Control and Treated trees, respectively; SEM = 2.4); however, there was a location x treatment interaction (P = 0.036; Table 4). Grapefruit 5 (Indian River) and Valencia 22 (Southwest) experienced an average of 41% less (P = 0.069) yield when treated with bactericides. In contrast, Midsweet 2 (Southwest) experienced a 24% greater (P = 0.050) yield when treated with bactericides.

There were 12 locations with yield data from Year 2 only (data not shown). For these locations, bactericide application had no impact (P = 0.761) on fruit yield (60 vs. 61 kg/tree for Control and Treated trees, respectively; SEM = 1.8). There was no location x treatment interaction (P = 0.153).

## Fruit Drop Single Year Data

There were 15 locations with fruit drop data from Year 1 only (Table 5). For these locations, bactericide application resulted in greater (P = 0.021) fruit drop (16 vs. 18 % for Control and Treated trees, respectively; SEM = 0.7); however, there was a location x treatment interaction (P = 0.037; Table 5). Hamlin 8 (Southwest), Midsweet 3 (Southwest), and Valencia 22 (Southwest) experienced an average of 40% greater ( $P \le 0.083$ ) fruit drop when treated with bactericides.

There were 17 locations with fruit drop data from Year 2 only (Table 6). For these locations, bactericide application had no impact (P = 0.850) on fruit drop (53 vs. 53 % for Control and Treated trees, respectively; SEM = 0.7); however, there was a location x treatment interaction (P = 0.009; Table 6). Valencia 29 (Ridge) and Valencia 32 (Southwest) experienced an average of 19% greater ( $P \le 0.051$ ) fruit drop when treated with bactericides. In contrast, Valencia 28 (Ridge) experienced a 17 % lesser (P = 0.037) fruit drop when treated with bactericides.

### <u>Tree Disease Index Score</u>

Disease Index (DI) scoring data were collected from all locations in both years (Table 7). Overall, bactericide application reduced (P = 0.009) tree health score (22.0 vs. 22.2 for Control and Treated trees, respectively; SEM = 0.06); however, there was a location x treatment x year interaction (P = 0.002; Table 7). A total of 96 entries are represented in this dataset (48 locations x 2 harvest seasons). Within this interaction, DI was impacted by bactericide application at 20 locations (Table 7). Among these, 14 locations experienced an average of 8.4% worsening in tree DI score, while 6 locations experienced an average of 7.1% improvement in tree DI score as a result of bactericide application. Individual results on the remaining 76 non-impacted entries is provided in Appendix A.

## PCR Assay; Cycle Threshold (CT Value)

There were 39 locations with CT Values from both harvest seasons. For these locations, there was no main effect (P = 0.62) of bactericide application on CT value (29.4 vs. 29.3 for Control and Treated trees, respectively; SEM = 0.10); however, there was a location x treatment x year interaction (P = 0.07).

This interaction revealed both advantages and disadvantages relative to bactericide application and subsequent PCR measure of tree infectivity (Table 8). In Year 1, 5 locations revealed an advantage of bactericide application, while 6 locations experienced a disadvantage. In Year 2, no locations experienced an advantage of bactericide application, while 2 locations experienced a disadvantage.

There were 9 locations with CT Values on a single year only with no impact ( $P \ge 0.15$ ) of bactericide application on CT value (32.5 vs. 33.6 for Control and Treated trees, respectively, in Year 1, and 28.6 and 28.2 for Control and Treated trees, respectively, in Year 2 (SEM = 0.55 and 0.29).

### **Literature Cited**

Saville, D.J. 2018. Chapter 5: Multiple Comparison Procedures: The Ins and Outs. In: B. Glaz and K. M. Yeater, editors, Applied Statistics in Agricultural, Biological, and Environmental Sciences. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., Madison, WI. p. 85-106.

**Table 1**. Grower cooperator locations and dataset contribution.

| Region | Trial Site<br>Code | Planting<br>date | Rootstock | Scion    | Yield<br>Season 1 | Yield<br>Season 2 | Drop<br>Season 1 | Drop<br>Season 2 | DI<br>Season 1 | DI<br>Season 2 | CT<br>Season 1 | CT<br>Season 2 |
|--------|--------------------|------------------|-----------|----------|-------------------|-------------------|------------------|------------------|----------------|----------------|----------------|----------------|
| River  | Grapefruit 1       | 2013             | Sour      | RayRuby  | X                 | X                 | X                | X X              | X              | X X            | X              | X              |
| River  | Grapefruit 3       | 2013             | Sour      | RayRuby  | X                 | X                 | X                | X                | X              | X              | X              | X              |
| River  | Grapefruit 5       | 1989             | Swingle   | Flame    | X                 |                   | X                |                  | X              | X              | X              | X              |
| River  | Grapefruit 7       | 1989             | Swingle   | Flame    | X                 | X                 | X                | X                | X              | X              | X              | X              |
| River  | Grapefruit 8       | 1989             | Swingle   | Flame    |                   |                   |                  |                  | X              | X              | X              | X              |
| SW     | Hamlin 3           | 2012             | Carrizo   | Hamlin   | X                 |                   | X                |                  | X              | X              | X              |                |
| River  | Hamlin 4           | 1985             | Sour      | Hamlin   | X                 | X                 | X                | X                | X              | X              | X              | X              |
| SW     | Hamlin 5           | 2014             | Swingle   | Hamlin   |                   |                   |                  |                  | X              | X              | X              | X              |
| SW     | Hamlin 6           | 1991             | F80       | Hamlin   | X                 |                   | X                |                  | X              | X              | X              |                |
| SW     | Hamlin 7           | 2011             | Carrizo   | Hamlin   | X                 |                   | X                |                  | X              | X              | X              |                |
| SW     | Hamlin 8           | 2012             | Swingle   | Hamlin   | X                 |                   | X                |                  | X              | X              | X              | X              |
| Ridge  | Hamlin 12          | 2007             | Cleo      | Hamlin   |                   | X                 |                  | X                | X              | X              | X              | X              |
| Ridge  | Hamlin 13          | 2007             | Swingle   | Hamlin   |                   | X                 |                  | X                | X              | X              | X              | X              |
| Ridge  | Hamlin 14          | 2007             | Carrizo   | Hamlin   |                   | X                 |                  | X                | X              | X              | X              | X              |
| Ridge  | Hamlin 15          | 2008             | Swingle   | Hamlin   |                   | X                 |                  | X                | X              | X              | X              | X              |
| SW     | Hamlin 16          | 2007             | Kuharske  | Hamlin   |                   |                   |                  |                  | X              | X              | X              | X              |
| Ridge  | Hamlin 17          | 2007             | Cleo      | Hamlin   |                   | X                 |                  | X                | X              | X              | X              | X              |
| SW     | Midsweet 2         | 2009             | Carrizo   | Midsweet | X                 |                   | X                |                  | X              | X              | X              |                |
| SW     | Midsweet 3         | 2008             | Swingle   | Midsweet | X                 |                   | X                |                  | X              | X              | X              | X              |
| SW     | Midsweet 4         | 2007             | Swg/Kuhr  | Midsweet |                   | X                 |                  | X                | X              | X              |                | X              |
| SW     | Valencia 3         | 2015             | Carrizo   | Valencia | X                 |                   | X                |                  | X              | X              | X              |                |
| SW     | Valencia 4         | 2002             | Kuharske  | Valencia | X                 | X                 | X                | X                | X              | X              | X              | X              |
| SW     | Valencia 5         | 2002             | Kuharske  | Valencia | X                 | X                 | X                | X                | X              | X              | X              | X              |
| SW     | Valencia 6         | 2008             | Kuharske  | Valencia | X                 | X                 | X                | X                | X              | X              | X              | X              |
| River  | Valencia 7         | 2008             | Swingle   | Valencia | X                 |                   | X                |                  | X              | X              | X              | X              |
| River  | Valencia 8         | 2008             | Swingle   | Valencia | X                 |                   | X                |                  | X              | X              | X              | X              |
| River  | Valencia 9         | 2008             | Swingle   | Valencia | X                 |                   | X                |                  | X              | X              | X              | X              |
| SW     | Valencia 12        | 1992             | Carrizo   | Valencia | X                 |                   | X                |                  | X              | X              | X              | X              |

| Region | Trial Site  | Planting   | Rootstock | Scion    | Yield    | Yield    | Drop     | Drop     | DI       | DI       | CT       | CT       |
|--------|-------------|------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        | Code        | date       |           |          | Season 1 | Season 2 |
| SW     | Valencia 13 | 1992       | Carrizo   | Valencia | X        |          | X        |          | X        | X        | X        | X        |
| SW     | Valencia 14 | 1992       | Carrizo   | Valencia | X        |          | X        |          | X        | X        | X        | X        |
| Ridge  | Valencia 15 | 2000       | Swingle   | Valencia | X        | X        | X        | X        | X        | X        | X        | X        |
| Ridge  | Valencia 16 | 2000       | Swingle   | Valencia | X        | X        | X        | X        | X        | X        | X        | X        |
| Ridge  | Valencia 17 | 1997       | Swingle   | Valencia | X        | X        | X        | X        | X        | X        | X        | X        |
| SW     | Valencia 21 | 1991       | Carrizo   | Valencia |          |          |          |          | X        | X        | X        |          |
| SW     | Valencia 22 | 1992       | Carrizo   | Valencia | X        |          | X        |          | X        | X        | X        |          |
| SW     | Valencia 23 | 2011       | Swingle   | Valencia | X        | X        | X        | X        | X        | X        | X        | X        |
| Ridge  | Valencia 28 | 2007       | Swingle   | Valencia | X        | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 29 | 2008       | Kuharske  | Valencia | X        | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 30 | 2008       | Kuharske  | Valencia | X        | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 31 | 2007       | Kuharske  | Valencia | X        | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 32 | 10 + years | Kuharske  | Valencia |          | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 33 | 2000       | Kuhr/812  | Valencia |          | X        |          | X        | X        | X        |          | X        |
| Ridge  | Valencia 34 | 15 + years | Kuharske  | Valencia |          | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 35 | 15 + years | Kuharske  | Valencia |          | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 37 | 2008       | Kuharske  | Valencia |          | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 38 | 20 + years | Kuharske  | Valencia | X        | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 39 | 15 + years | Kuharske  | Valencia |          | X        |          | X        | X        | X        | X        | X        |
| Ridge  | Valencia 40 | 2011       | Swingle   | Valencia |          |          |          | X        | X        | X        | X        | X        |

Table 2. Effect of bactericide application on citrus fruit yield in kg/tree (40 kg = 1 box) in locations with two years of yield data.

| Trial         | Location     | Rootstock  | Scion       | Year | Control | Treated | SE  | <b>P</b> ≤ |
|---------------|--------------|------------|-------------|------|---------|---------|-----|------------|
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 1    | 39      | 39      | 4.5 | 0.983      |
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 2    | 35      | 25      | 4.5 | 0.141      |
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 1    | 30      | 45      | 4.5 | 0.023      |
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 2    | 26      | 22      | 4.5 | 0.581      |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 1    | 119     | 119     | 6.4 | 0.979      |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 2    | 96      | 113     | 6.4 | 0.061      |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 1    | 143     | 118     | 6.4 | 0.007      |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 2    | 106     | 91      | 6.4 | 0.082      |
| Valencia_04   | Southwest    | Valencia   | Kuharske    | 1    | 26      | 28      | 6.4 | 0.887      |
| Valencia_04   | SouthWest    | Valencia   | Kuharske    | 2    | 26      | 23      | 6.4 | 0.688      |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 1    | 41      | 41      | 6.4 | 0.918      |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 2    | 43      | 41      | 6.4 | 0.830      |
| Valencia_06   | SouthWest    | Valencia   | Kuharske    | 1    | 58      | 53      | 6.4 | 0.564      |
| Valencia_06   | SouthWest    | Valencia   | Kuharske    | 2    | 41      | 46      | 6.4 | 0.587      |
| Valencia_15   | Ridge        | Valencia   | Swingle     | 1    | 80      | 78      | 6.4 | 0.904      |
| Valencia_15   | Ridge        | Valencia   | Swingle     | 2    | 82      | 71      | 6.4 | 0.224      |
| Valencia_16   | Ridge        | Valencia   | Swingle     | 1    | 83      | 86      | 6.4 | 0.723      |
| Valencia_16   | Ridge        | Valencia   | Swingle     | 2    | 60      | 69      | 6.4 | 0.322      |
| Valencia_17   | Ridge        | Valencia   | Swingle     | 1    | 48      | 54      | 3.2 | 0.186      |
| Valencia_17   | Ridge        | Valencia   | Swingle     | 2    | 115     | 111     | 3.2 | 0.300      |
| Valencia_23   | Southwest    | Valencia   | Swingle     | 1    | 25      | 26      | 6.4 | 0.894      |
| Valencia_23   | Southwest    | Valencia   | Swingle     | 2    | 14      | 13      | 6.4 | 0.880      |
| Valencia_28   | Ridge        | Valencia   | Swingle     | 1    | 76      | 68      | 5.7 | 0.303      |
| Valencia_28   | Ridge        | Valencia   | Swingle     | 2    | 62      | 73      | 5.7 | 0.160      |

| Trial       | Location  | Rootstock | Scion    | Year | Control | Treated | SE  | <b>P</b> ≤ |
|-------------|-----------|-----------|----------|------|---------|---------|-----|------------|
| Valencia_29 | Ridge     | Valencia  | Kuharske | 1    | 56      | 58      | 6.4 | 0.831      |
| Valencia_29 | Ridge     | Valencia  | Kuharske | 2    | 47      | 43      | 6.4 | 0.591      |
| Valencia_30 | Ridge     | Valencia  | Kuharske | 1    | 36      | 33      | 6.4 | 0.728      |
| Valencia_30 | Ridge     | Valencia  | Kuharske | 2    | 35      | 22      | 6.4 | 0.147      |
| Valencia_31 | SouthWest | Valencia  | Kuharske | 1    | 62      | 56      | 6.4 | 0.493      |
| Valencia_31 | SouthWest | Valencia  | Kuharske | 2    | 36      | 42      | 6.4 | 0.469      |
| Valencia_38 | Ridge     | Valencia  | Kuharske | 1    | 185     | 145     | 6.4 | 0.0001     |
| Valencia_38 | Ridge     | Valencia  | Kuharske | 2    | 90      | 80      | 6.4 | 0.267      |

**Table 3.** Effect of bactericide application on fruit dropped prior to harvest (% of total) in locations with two years of fruit drop data.

| Trial         | Location     | Rootstock  | Scion       | Year | Control | Treated | SE   | <b>P</b> ≤ |
|---------------|--------------|------------|-------------|------|---------|---------|------|------------|
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 1    | 50.8    | 40.4    | 3.18 | 0.024      |
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 2    | 52.3    | 63.8    | 3.09 | 0.012      |
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 1    | 55.5    | 37.5    | 3.11 | < 0.0001   |
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 2    | 64.7    | 64.3    | 3.07 | 0.933      |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 1    | 5.3     | 5.9     | 1.83 | 0.834      |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 2    | 25.0    | 19.7    | 3.40 | 0.302      |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 1    | 12.5    | 18.9    | 3.33 | 0.140      |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 2    | 32.8    | 40.0    | 4.45 | 0.244      |
| Valencia_04   | SouthWest    | Valencia   | Kuharske    | 1    | 44.9    | 43.9    | 4.54 | 0.877      |
| Valencia_04   | SouthWest    | Valencia   | Kuharske    | 2    | 60.3    | 60.8    | 4.44 | 0.938      |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 1    | 24.1    | 29.3    | 4.04 | 0.347      |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 2    | 49.0    | 47.4    | 4.57 | 0.807      |
| Valencia_06   | SouthWest    | Valencia   | Kuharske    | 1    | 15.5    | 14.8    | 2.95 | 0.873      |
| Valencia_06   | SouthWest    | Valencia   | Kuharske    | 2    | 51.6    | 41.7    | 4.50 | 0.127      |
| Valencia_15   | Ridge        | Valencia   | Swingle     | 1    | 10.9    | 13.0    | 2.76 | 0.578      |
| Valencia_15   | Ridge        | Valencia   | Swingle     | 2    | 20.2    | 27.8    | 3.96 | 0.154      |
| Valencia_16   | Ridge        | Valencia   | Swingle     | 1    | 16.9    | 11.2    | 2.56 | 0.162      |
| Valencia_16   | Ridge        | Valencia   | Swingle     | 2    | 35.0    | 28.8    | 4.01 | 0.292      |
| Valencia_17   | Ridge        | Valencia   | Swingle     | 1    | 33.1    | 32.7    | 2.10 | 0.900      |
| Valencia_17   | Ridge        | Valencia   | Swingle     | 2    | 22.4    | 24.2    | 1.87 | 0.468      |
| Valencia_23   | Southwest    | Valencia   | Swingle     | 1    | 40.9    | 43.6    | 4.54 | 0.681      |
| Valencia_23   | Southwest    | Valencia   | Swingle     | 2    | 73.6    | 74.2    | 3.84 | 0.911      |

Table 4. Effect of bactericide application in year 1 (2016-17) only on citrus fruit yield in kg/tree (40 kg = 1 box).

| Trial         | Location     | Rootstock | Scion      | Control | Treated | SE    | <b>P</b> ≤ |
|---------------|--------------|-----------|------------|---------|---------|-------|------------|
| Grapefruit_05 | Indian River | Swingle   | Grapefruit | 136     | 80      | 9.18  | < 0.0001   |
| Hamlin_03     | Southwest    | Carrizo   | Hamlin     | 41      | 37      | 9.18  | 0.750      |
| Hamlin_06     | Southwest    | F_80      | Hamlin     | 160     | 139     | 9.18  | 0.113      |
| Hamlin_07     | Southwest    | Carrizo   | Hamlin     | 31      | 29      | 9.18  | 0.872      |
| Hamlin_08     | Southwest    | Swingle   | Hamlin     | 44      | 29      | 9.18  | 0.279      |
| Midsweet_02   | Southwest    | Carrizo   | Midsweet   | 109     | 135     | 9.18  | 0.050      |
| Midsweet_03   | SouthWest    | Swingle   | Midsweet   | 98      | 94      | 9.18  | 0.729      |
| Valencia_03   | SouthWest    | Carrizo   | Valencia   | 3       | 0       | 9.18  | 0.834      |
| Valencia_07   | Indian River | Swingle   | Valencia   | 73      | 71      | 9.18  | 0.883      |
| Valencia_08   | Indian River | Swingle   | Valencia   | 70      | 73      | 9.18  | 0.803      |
| Valencia_09   | Indian River | Swingle   | Valencia   | 77      | 80      | 9.18  | 0.815      |
| Valencia_12   | Southwest    | Carrizo   | Valencia   | 89      | 93      | 9.18  | 0.716      |
| Valencia_13   | Southwest    | Carrizo   | Valencia   | 104     | 100     | 12.99 | 0.773      |
| Valencia_14   | Southwest    | Carrizo   | Valencia   | 100     | 89      | 9.18  | 0.417      |
| Valencia_22   | Southwest    | Carrizo   | Valencia   | 60      | 36      | 9.18  | 0.069      |

Table 5. Effect of bactericide application in year 1 only (2016-17) on fruit dropped prior to harvest (% of total)

| Trial         | Location     | Rootstock | Scion      | Control | Treated | SE   | P≤    |
|---------------|--------------|-----------|------------|---------|---------|------|-------|
| Grapefruit_05 | Indian River | Swingle   | Grapefruit | 5.7     | 10.0    | 2.14 | 0.106 |
| Hamlin_03     | Southwest    | Carrizo   | Hamlin     | 18.4    | 19.3    | 2.89 | 0.827 |
| Hamlin_06     | Southwest    | F_80      | Hamlin     | 6.0     | 6.8     | 1.75 | 0.756 |
| Hamlin_07     | Southwest    | Carrizo   | Hamlin     | 34.9    | 35.9    | 3.55 | 0.843 |
| Hamlin_08     | Southwest    | Swingle   | Hamlin     | 25.4    | 48.5    | 3.71 | 0.000 |
| Midsweet_02   | Southwest    | Carrizo   | Midsweet   | 13.4    | 12.6    | 2.40 | 0.824 |
| Midsweet_03   | SouthWest    | Swingle   | Midsweet   | 8.1     | 14.1    | 2.52 | 0.063 |
| Valencia_03   | SouthWest    | Carrizo   | Valencia   | 12.5    | 10.8    | 3.14 | 0.671 |
| Valencia_07   | Indian River | Swingle   | Valencia   | 19.1    | 19.6    | 2.90 | 0.913 |
| Valencia_08   | Indian River | Swingle   | Valencia   | 21.2    | 17.9    | 2.80 | 0.423 |
| Valencia_09   | Indian River | Swingle   | Valencia   | 19.2    | 14.7    | 2.57 | 0.242 |
| Valencia_12   | Southwest    | Carrizo   | Valencia   | 22.3    | 22.4    | 3.06 | 0.995 |
| Valencia_13   | Southwest    | Carrizo   | Valencia   | 14.5    | 18.9    | 4.05 | 0.344 |
| Valencia_14   | Southwest    | Carrizo   | Valencia   | 14.0    | 17.3    | 2.76 | 0.371 |
| Valencia_22   | Southwest    | Carrizo   | Valencia   | 22.4    | 30.5    | 3.40 | 0.083 |

**Table 6.** Effect of bactericide application in year 2 only (2017-18) on fruit dropped prior to harvest (% of total)

| Trial       | Location  | Rootstock          | Scion    | Control | Treated | SE   | <b>P</b> ≤ |
|-------------|-----------|--------------------|----------|---------|---------|------|------------|
| Hamlin_12   | Ridge     | Cleo               | Hamlin   | 58.2    | 51.6    | 2.96 | 0.114      |
| Hamlin_13   | Ridge     | Swingle            | Hamlin   | 52.4    | 48.1    | 2.96 | 0.304      |
| Hamlin_14   | Ridge     | Carrizo            | Hamlin   | 62.3    | 56.8    | 2.93 | 0.184      |
| Hamlin_15   | Ridge     | Swingle            | Hamlin   | 73.5    | 67.6    | 2.77 | 0.124      |
| Hamlin_17   | Ridge     | Cleo               | Hamlin   | 66.4    | 68.0    | 2.77 | 0.672      |
| Midsweet_04 | Southwest | Swingle_&_Kuharske | Midsweet | 58.6    | 57.9    | 3.38 | 0.875      |
| Valencia_28 | Ridge     | Swingle            | Valencia | 48.0    | 40.1    | 2.60 | 0.037      |
| Valencia_29 | Ridge     | Kuharske           | Valencia | 40.9    | 55.4    | 2.95 | 0.001      |
| Valencia_30 | Ridge     | Kuharske           | Valencia | 53.8    | 59.0    | 2.91 | 0.213      |
| Valencia_31 | SouthWest | Kuharske           | Valencia | 23.6    | 23.8    | 2.51 | 0.958      |
| Valencia_32 | SouthWest | Kuharske           | Valencia | 58.8    | 66.8    | 2.79 | 0.051      |
| Valencia_33 | Ridge     | Kuharske_&_US812   | Valencia | 63.5    | 61.3    | 2.88 | 0.584      |
| Valencia_34 | Ridge     | Kuharske           | Valencia | 59.9    | 65.0    | 2.82 | 0.213      |
| Valencia_35 | Ridge     | Kuharske           | Valencia | 48.2    | 53.4    | 2.96 | 0.216      |
| Valencia_37 | Ridge     | Kuharske           | Valencia | 39.0    | 40.5    | 2.91 | 0.725      |
| Valencia_38 | Ridge     | Kuharske           | Valencia | 49.3    | 50.5    | 2.96 | 0.787      |
| Valencia_39 | Ridge     | Kuharske           | Valencia | 46.3    | 40.9    | 2.91 | 0.196      |

**Table 7.** Effect of bactericide application on disease index score ((DI; 20 treatment-impacted locations only)

| Trial         | Location     | Scion      | Rootstock   | Year | Control | Treated | SEM  | P≤    |
|---------------|--------------|------------|-------------|------|---------|---------|------|-------|
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 1    | 13.1    | 12.2    | 0.41 | 0.096 |
| Grapefruit_08 | Indian River | Grapefruit | Sour Orange | 2    | 25.8    | 27.2    | 0.58 | 0.092 |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 1    | 21.7    | 24.4    | 0.58 | 0.001 |
| Hamlin_06     | Southwest    | Hamlin     | F_80        | 2    | 19.0    | 21.7    | 0.58 | 0.001 |
| Hamlin_16     | Southwest    | Hamlin     | Kuharske    | 1    | 27.9    | 30.2    | 0.58 | 0.006 |
| Hamlin_16     | Southwest    | Hamlin     | Kuharske    | 2    | 29.6    | 31.0    | 0.58 | 0.084 |
| Midsweet_03   | SouthWest    | Midsweet   | Swingle     | 2    | 19.7    | 21.3    | 0.58 | 0.049 |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 1    | 20.2    | 21.6    | 0.58 | 0.089 |
| Valencia_05   | SouthWest    | Valencia   | Kuharske    | 2    | 18.8    | 20.9    | 0.58 | 0.011 |
| Valencia_12   | Southwest    | Valencia   | Carrizo     | 2    | 26.7    | 25.1    | 0.58 | 0.057 |
| Valencia_13   | Southwest    | Valencia   | Carrizo     | 2    | 24.6    | 26.5    | 0.58 | 0.018 |
| Valencia_14   | Southwest    | Valencia   | Carrizo     | 1    | 22.4    | 20.9    | 0.58 | 0.063 |
| Valencia_14   | Southwest    | Valencia   | Carrizo     | 2    | 25.4    | 23.9    | 0.58 | 0.067 |
| Valencia_21   | Southwest    | Valencia   | Carrizo     | 2    | 23.7    | 25.8    | 0.58 | 0.011 |
| Valencia_23   | Southwest    | Valencia   | Swingle     | 2    | 21.6    | 20.1    | 0.58 | 0.060 |
| Valencia_30   | Ridge        | Valencia   | Kuharske    | 1    | 25.3    | 27.0    | 0.58 | 0.039 |
| Valencia_32   | SouthWest    | Valencia   | Kuharske    | 2    | 23.6    | 25.4    | 0.58 | 0.025 |
| Valencia_35   | Ridge        | Valencia   | Kuharske    | 2    | 24.9    | 26.9    | 0.58 | 0.015 |
| Valencia_37   | Ridge        | Valencia   | Kuharske    | 2    | 24.2    | 22.5    | 0.58 | 0.049 |
| Valencia_38   | Ridge        | Valencia   | Kuharske    | 2    | 23.0    | 24.4    | 0.58 | 0.074 |

Table 8. Effect of bactericide application on PCR detection of HLB infection in (CT Value; in 13 treatment-impacted locations only).

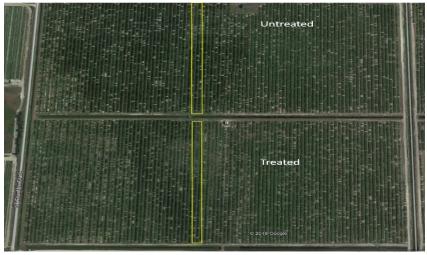

| Trial         | Location     | Scion    | Rootstock   | Year | Control | Treated | SEM   | <b>P</b> ≤ |
|---------------|--------------|----------|-------------|------|---------|---------|-------|------------|
| Grapefruit_01 | Indian River | RayRuby  | Sour Orange | 1    | 38.7    | 36.1    | 0.615 | 0.003      |
| Hamlin_05     | Southwest    | Hamlin   | Swingle     | 1    | 36.3    | 34.2    | 0.870 | 0.093      |
| Hamlin_08     | Southwest    | Hamlin   | Swingle     | 1    | 33.8    | 30.1    | 0.870 | 0.003      |
| Hamlin_13     | Ridge        | Hamlin   | Swingle     | 1    | 26.4    | 29.6    | 0.870 | 0.011      |
| Hamlin_17     | Ridge        | Hamlin   | Cleo        | 1    | 30.1    | 27.9    | 0.870 | 0.075      |
| Valencia_07   | Indian River | Valencia | Swingle     | 2    | 31.7    | 28.3    | 0.870 | 0.006      |
| Valencia_13   | Southwest    | Valencia | Carrizo     | 1    | 25.4    | 27.8    | 0.870 | 0.052      |
| Valencia_23   | Southwest    | Valencia | Swingle     | 1    | 34.5    | 36.9    | 0.870 | 0.058      |
| Valencia_28   | Ridge        | Valencia | Swingle     | 2    | 30.9    | 27.7    | 0.778 | 0.004      |
| Valencia_31   | SouthWest    | Valencia | Kuharske    | 1    | 25.4    | 27.8    | 0.870 | 0.060      |
| Valencia_34   | Ridge        | Valencia | Kuharske    | 1    | 30.2    | 26.7    | 1.227 | 0.020      |
| Valencia_38   | Ridge        | Valencia | Kuharske    | 1    | 36.9    | 33.6    | 0.870 | 0.008      |
| Valencia_40   | Ridge        | Valencia | Swingle     | 1    | 28.9    | 34.3    | 0.870 | < 0.001    |

Figure 1. Treatment layout options





The yellow box indicates the 4 untreated rows (Control). The blue box indicates the 2 rows (treated and untreated) that were evaluated. The red bars within the evaluation rows represent the 4 groups of 5 sentinel trees for treated and untreated.



# **Double Block Design**

The entire block is designated to be treated or untreated. The yellow boxes indicate the rows that contain the 4 groups of 5 sentinel trees.

Appendix A: Effect of bactericide application on disease index score (non-impacted locations only).

| Trial         | Location     | Scion      | Rootstock   | Year | Control | Treated | SEM  | P ≤   |
|---------------|--------------|------------|-------------|------|---------|---------|------|-------|
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 1    | 13.1    | 13.4    | 0.41 | 0.694 |
| Grapefruit_01 | Indian River | RayRuby    | Sour Orange | 2    | 21.6    | 21.3    | 0.41 | 0.596 |
| Grapefruit_03 | Indian River | RayRuby    | Sour Orange | 2    | 22.3    | 21.9    | 0.41 | 0.510 |
| Grapefruit_05 | Indian River | Grapefruit | Swingle     | 1    | 19.4    | 18.7    | 0.58 | 0.376 |
| Grapefruit_05 | Indian River | Grapefruit | Swingle     | 2    | 26.5    | 25.7    | 0.58 | 0.309 |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 1    | 18.2    | 18.0    | 0.58 | 0.815 |
| Grapefruit_07 | Indian River | Grapefruit | Sour Orange | 2    | 26.2    | 25.2    | 0.58 | 0.231 |
| Grapefruit_08 | Indian River | Grapefruit | Sour Orange | 1    | 18.3    | 18.4    | 0.58 | 0.938 |
| Hamlin_03     | Southwest    | Hamlin     | Carrizo     | 1    | 16.6    | 17.3    | 0.58 | 0.430 |
| Hamlin_03     | Southwest    | Hamlin     | Carrizo     | 2    | 15.1    | 15.1    | 0.58 | 1.000 |
| Hamlin_04     | Indian River | Hamlin     | Sour Orange | 2    | 25.3    | 26.5    | 0.58 | 0.137 |
| Hamlin_05     | Southwest    | Hamlin     | Swingle     | 1    | 15.1    | 15.5    | 0.58 | 0.606 |
| Hamlin_05     | Southwest    | Hamlin     | Swingle     | 2    | 20.2    | 20.5    | 0.58 | 0.757 |
| Hamlin_06     | Southwest    | Hamlin     | F_80        | 1    | 16.1    | 15.8    | 0.58 | 0.746 |
| Hamlin_07     | Southwest    | Hamlin     | Carrizo     | 1    | 16.5    | 16.0    | 0.58 | 0.574 |
| Hamlin_07     | Southwest    | Hamlin     | Carrizo     | 2    | 23.5    | 23.0    | 0.58 | 0.592 |
| Hamlin_08     | Southwest    | Hamlin     | Swingle     | 1    | 16.6    | 17.9    | 0.58 | 0.122 |
| Hamlin_08     | Southwest    | Hamlin     | Swingle     | 2    | 21.9    | 22.2    | 0.58 | 0.792 |
| Hamlin_12     | Ridge        | Hamlin     | Cleo        | 1    | 23.9    | 22.8    | 0.58 | 0.182 |
| Hamlin_12     | Ridge        | Hamlin     | Cleo        | 2    | 24.6    | 24.6    | 0.58 | 0.855 |
| Hamlin_13     | Ridge        | Hamlin     | Swingle     | 1    | 27.8    | 28.0    | 0.58 | 0.855 |
| Hamlin_13     | Ridge        | Hamlin     | Swingle     | 2    | 26.9    | 27.8    | 0.58 | 0.261 |
| Hamlin_14     | Ridge        | Hamlin     | Carrizo     | 1    | 26.2    | 25.8    | 0.58 | 0.627 |
| Hamlin_14     | Ridge        | Hamlin     | Carrizo     | 2    | 25.6    | 25.1    | 0.58 | 0.544 |

| Trial       | Location     | Scion    | Rootstock          | Year | Control | Treated | SEM  | <b>P</b> ≤ |
|-------------|--------------|----------|--------------------|------|---------|---------|------|------------|
| Hamlin_15   | Ridge        | Hamlin   | Swingle            | 1    | 24.7    | 25.7    | 0.58 | 0.249      |
| Hamlin_15   | Ridge        | Hamlin   | Swingle            | 2    | 27.5    | 27.8    | 0.58 | 0.785      |
| Hamlin_17   | Ridge        | Hamlin   | Cleo               | 1    | 25.5    | 26.2    | 0.58 | 0.362      |
| Hamlin_17   | Ridge        | Hamlin   | Cleo               | 2    | 27.8    | 27.0    | 0.58 | 0.253      |
| Midsweet_02 | SouthWest    | Midsweet | Carrizo            | 1    | 21.4    | 20.8    | 0.58 | 0.517      |
| Midsweet_02 | SouthWest    | Midsweet | Carrizo            | 2    | 19.6    | 19.6    | 0.58 | 0.952      |
| Midsweet_03 | SouthWest    | Midsweet | Swingle            | 1    | 18.2    | 19.4    | 0.58 | 0.145      |
| Midsweet_04 | Southwest    | Midsweet | Swingle_&_Kuharske | 1    | 30.2    | 30.3    | 0.58 | 0.808      |
| Midsweet_04 | Southwest    | Midsweet | Swingle_&_Kuharske | 2    | 31.2    | 30.2    | 0.58 | 0.274      |
| Valencia_03 | SouthWest    | Valencia | Carrizo            | 1    | 1.0     | 0.8     | 0.58 | 0.879      |
| Valencia_03 | SouthWest    | Valencia | Carrizo            | 2    | 3.3     | 4.0     | 0.58 | 0.362      |
| Valencia_04 | SouthWest    | Valencia | Kuharske           | 1    | 20.6    | 20.5    | 0.58 | 0.968      |
| Valencia_04 | SouthWest    | Valencia | Kuharske           | 2    | 20.7    | 21.2    | 0.58 | 0.571      |
| Valencia_06 | SouthWest    | Valencia | Kuharske           | 1    | 20.3    | 21.5    | 0.58 | 0.140      |
| Valencia_06 | SouthWest    | Valencia | Kuharske           | 2    | 20.6    | 19.2    | 0.58 | 0.106      |
| Valencia_07 | Indian River | Valencia | Swingle            | 1    | 17.6    | 18.1    | 0.58 | 0.517      |
| Valencia_07 | Indian River | Valencia | Swingle            | 2    | 19.0    | 19.8    | 0.58 | 0.384      |
| Valencia_08 | Indian River | Valencia | Swingle            | 1    | 17.9    | 18.3    | 0.58 | 0.656      |
| Valencia_08 | Indian River | Valencia | Swingle            | 2    | 19.1    | 20.1    | 0.58 | 0.225      |
| Valencia_09 | Indian River | Valencia | Swingle            | 1    | 18.5    | 18.6    | 0.58 | 0.968      |
| Valencia_09 | Indian River | Valencia | Swingle            | 2    | 20.3    | 19.2    | 0.58 | 0.195      |
| Valencia_12 | Southwest    | Valencia | Carrizo            | 1    | 20.9    | 21.4    | 0.58 | 0.494      |
| Valencia_13 | Southwest    | Valencia | Carrizo            | 1    | 21.7    | 21.2    | 0.58 | 0.544      |
| Valencia_15 | Ridge        | Valencia | Swingle            | 1    | 19.1    | 19.2    | 0.58 | 0.919      |

| Trial       | Location  | Scion    | Rootstock        | Year | Control | Treated | SEM  | <b>P</b> ≤ |
|-------------|-----------|----------|------------------|------|---------|---------|------|------------|
| Valencia_15 | Ridge     | Valencia | Swingle          | 2    | 20.4    | 19.8    | 0.58 | 0.494      |
| Valencia_16 | Ridge     | Valencia | Swingle          | 1    | 20.2    | 20.3    | 0.58 | 0.855      |
| Valencia_16 | Ridge     | Valencia | Swingle          | 2    | 20.2    | 20.5    | 0.58 | 0.761      |
| Valencia_17 | Ridge     | Valencia | Swingle          | 1    | 17.4    | 17.4    | 0.29 | 0.968      |
| Valencia_17 | Ridge     | Valencia | Swingle          | 2    | 20.4    | 20.2    | 0.30 | 0.501      |
| Valencia_21 | Southwest | Valencia | Carrizo          | 1    | 21.2    | 22.2    | 0.58 | 0.217      |
| Valencia_22 | Southwest | Valencia | Carrizo          | 1    | 20.4    | 21.5    | 0.58 | 0.182      |
| Valencia_22 | Southwest | Valencia | Carrizo          | 2    | 24.8    | 24.8    | 0.58 | 0.976      |
| Valencia_23 | Southwest | Valencia | Swingle          | 1    | 21.0    | 21.8    | 0.58 | 0.362      |
| Valencia_28 | Ridge     | Valencia | Swingle          | 1    | 25.8    | 26.2    | 0.52 | 0.625      |
| Valencia_28 | Ridge     | Valencia | Swingle          | 2    | 17.0    | 17.4    | 0.52 | 0.606      |
| Valencia_29 | Ridge     | Valencia | Kuharske         | 1    | 25.1    | 24.8    | 0.58 | 0.716      |
| Valencia_29 | Ridge     | Valencia | Kuharske         | 2    | 26.1    | 26.6    | 0.58 | 0.448      |
| Valencia_30 | Ridge     | Valencia | Kuharske         | 2    | 27.3    | 28.0    | 0.58 | 0.379      |
| Valencia_31 | SouthWest | Valencia | Kuharske         | 1    | 25.5    | 25.8    | 0.58 | 0.671      |
| Valencia_31 | SouthWest | Valencia | Kuharske         | 2    | 25.1    | 25.0    | 0.58 | 0.952      |
| Valencia_32 | SouthWest | Valencia | Kuharske         | 1    | 26.1    | 25.9    | 0.58 | 0.903      |
| Valencia_33 | Ridge     | Valencia | Kuharske & US812 | 1    | 25.8    | 25.7    | 0.58 | 0.903      |
| Valencia_33 | Ridge     | Valencia | Kuharske & US812 | 2    | 25.8    | 24.7    | 0.58 | 0.192      |
| Valencia_34 | Ridge     | Valencia | Kuharske         | 1    | 28.7    | 28.7    | 0.58 | 0.952      |
| Valencia_34 | Ridge     | Valencia | Kuharske         | 2    | 27.8    | 28.1    | 0.58 | 0.761      |
| Valencia_35 | Ridge     | Valencia | Kuharske         | 1    | 26.3    | 26.1    | 0.58 | 0.761      |
| Valencia_37 | Ridge     | Valencia | Kuharske         | 1    | 23.5    | 23.7    | 0.58 | 0.903      |
| Valencia_38 | Ridge     | Valencia | Kuharske         | 1    | 16.9    | 16.6    | 0.58 | 0.808      |

| Trial       | Location | Scion    | Rootstock | Year | Control | Treated | SEM   | <b>P</b> ≤ |
|-------------|----------|----------|-----------|------|---------|---------|-------|------------|
| Valencia_39 | Ridge    | Valencia | Kuharske  | 1    | 27.3    | 27.6    | 0.58  | 0.716      |
| Valencia_39 | Ridge    | Valencia | Kuharske  | 2    | 28.4    | 27.4    | 0.58  | 0.249      |
| Valencia_40 | Ridge    | Valencia | Swingle   | 1    | 21.0    | 21.0    | 0.073 | 0.952      |
| Valencia 40 | Ridge    | Valencia | Swingle   | 2    | 17.9    | 18.9    | 0.073 | 0.236      |