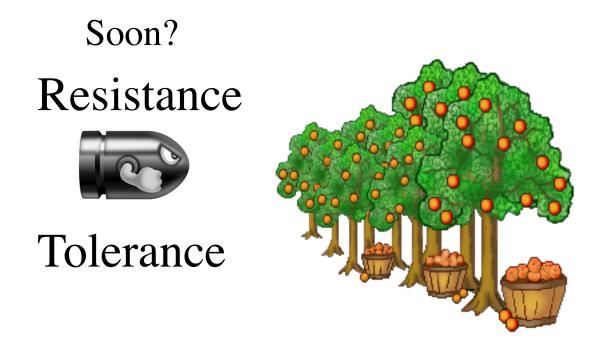


The Role of Bactericides in Huanglongbing Management

Stephanie Slinski, IRCHLB 3/15/2017

CRDF Bactericide program

- What are the goals of this program?
- How do we try to achieve these goals?


Less of this

More of this

How to Help Citrus Growers

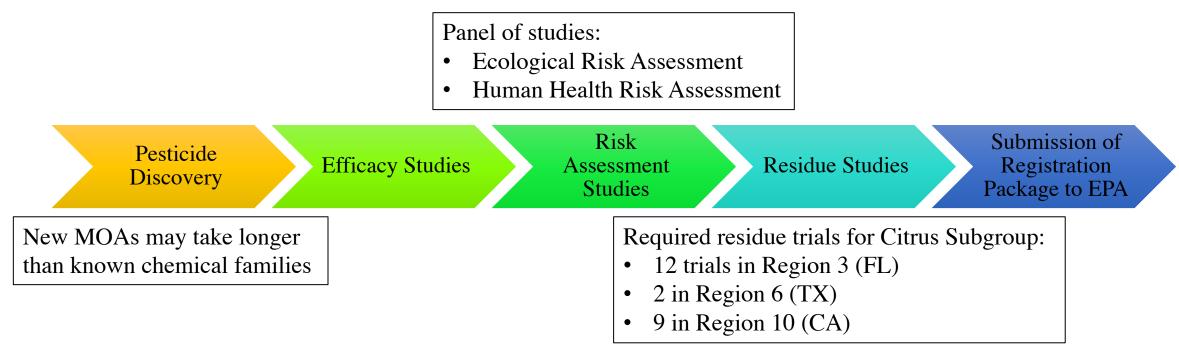
What the growers need *now*

- Keep trees in production
 - Slow the decline of infected trees
 - Improve fruit quality
 - Protect replants
- How?

CRDF Bactericide Program

Goal – get effective bactericides to growers

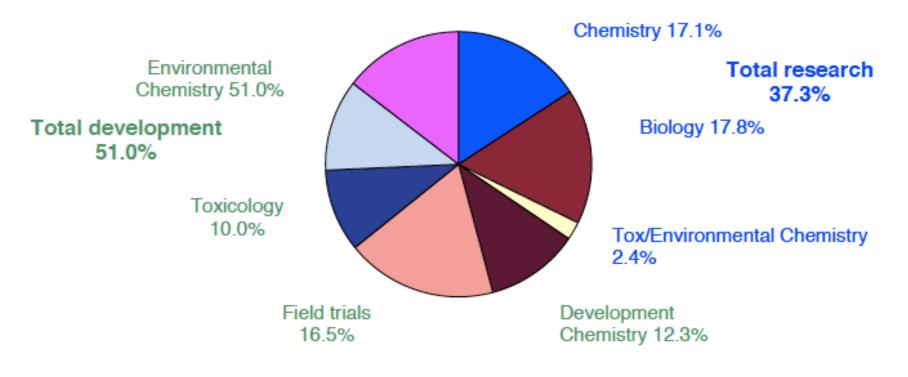
- First step identification of potential bactericides
 - R & D Libraries
 - Agricultural Chemical Companies
 - Pharmaceutical Companies
 - Other Industries
 - Researchers
 - Agricultural Chemicals (Labeled for other crops)



CRDF Bactericide Discovery

- What have we been looking at?
 - More than 1000 chemicals tested in vitro
 - Antibiotics
 - Nanomaterials
 - New molecular entities
 - Minimum risk
 - Biopesticides
 - Agricultural chemicals
- How to prioritize?

• Average development of a new active is 11.3 years


CLA/ECPA report on "The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010 to 2014. R&D expenditure in 2014 and expectations for 2019". March 2016

2010-14

Bactericide Discovery

Registration 11.7%

Total =\$286 m.

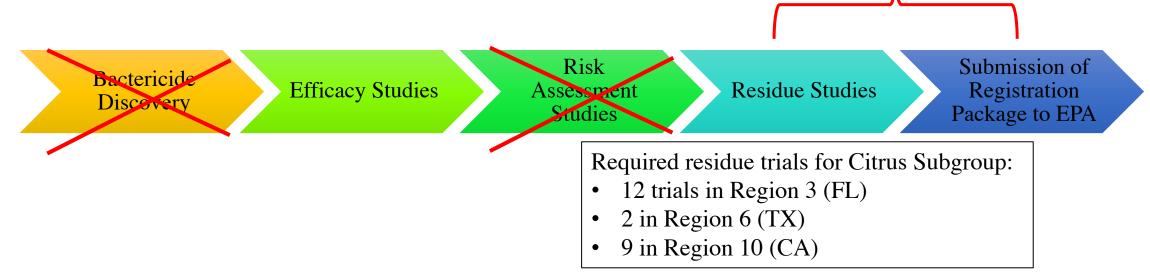
• CLA/ECPA report on "The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010 to 2014. R&D expenditure in 2014 and expectations for 2019". March 2016

- First step in the bactericide discovery process
 - What works in the petri plate?
 - More than 1000 chemicals tested
 - Antibiotics
 - Nanomaterials
 - New molecular entities
 - Minimum risk
 - Biopesticides
 - Agricultural chemicals
 - Near-term therapies needed
 - Next-generation bactericides are also important

Some bactericides are easier to register

• Biopesticide

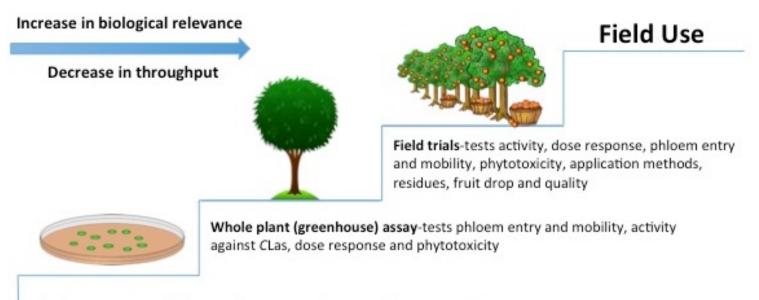
- Derived from natural materials such as animals, plants, bacteria, and certain minerals.
- Considered reduced risk pesticides
- May require a significantly reduced data set compared to conventional registrations.
- Registration time and fees
 - Biopesticide = 19 months and \$48,621
 - Conventional Pesticide = 24 months and over \$590,000


Minimum-Risk

- Exempt from registration under FIFRA section 25(b)
- Exempt Ingredients, both active and inert, are demonstrably safe for the intended use

- Labeled pesticides are a good solution
 - Time-to-market ~ 3 years
- Streptomycin and OTC

 \sim 1 year plus 24 month PRIA timeline (EPA)



CLA/ECPA report on "The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010 to 2014. R&D expenditure in 2014 and expectations for 2019". March 2016

Bactericide Evaluations

- How do we test materials
 - Assay system

Liberibacter crescens (laboratory) assay-tests bactericidal activity and dose response

• Several field trials are in place to test bactericides

Bactericide Evaluation

Biopesticide Trial

- All botanical oil products
 - Thyme Guard (Agro Research International)
 - Ecotrol Plus (Keyplex)
 - Onguard EO (AgXplore)
 - Xplode (AgXplore)
 - Research EO
- Company application recommendations/adjuvants (foliar)
- Applications every 60 days

Bactericide Evaluation

Biopesticide Trial

- Two nearby blocks
 - One with no HLB detected
 - One 100% HLB detection

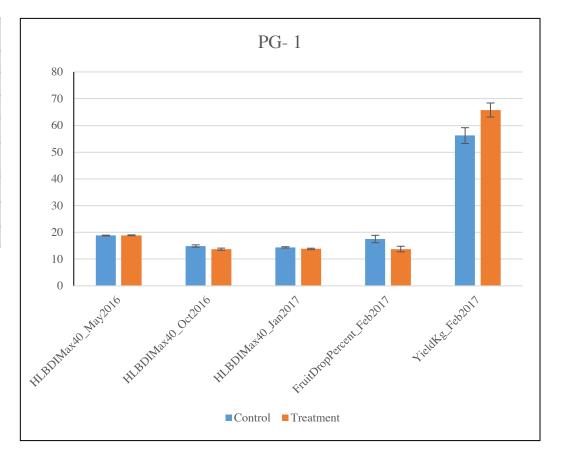
- Evaluations
 - Disease severity
 - Bacterial titer
 - Growth measurements
 - Leaf Nutrition
 - Canker
 - Fruit Drop
 - Yield

• After one year: no significant improvement in any treatment at either site

Bactericide Evaluations

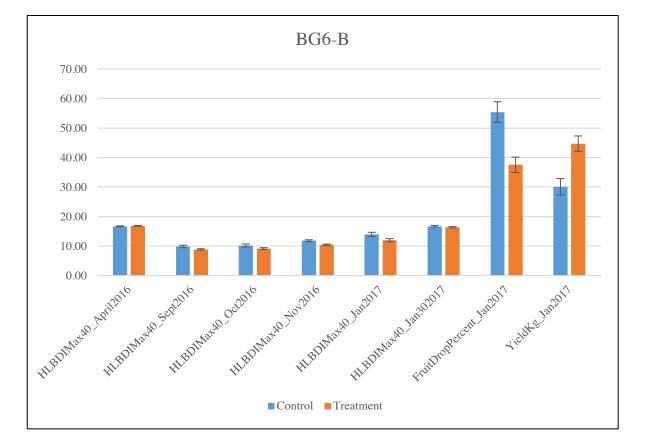
Grower Bactericide Trials

- Non-RCB
- Evaluating grower bactericide programs
 - Any adjuvant, tank mix, timing etc.
- Evaluation methods
 - 20 trees in four blocks in control and treatment row
 - Disease Severity (3x/year)
 - PCR (3x/year)
 - Yield
 - Fruit Drop


Variety	Number of Trials
Valencia	41
Hamlin	16
Grapefruit	11
Other	6

• 20 sites harvested

Grower Bactericide Trials


Valencia		Control		Treatment			
		Mean	Std Error	Mean	Std Error		
HLBDIMax40_May2016	20	18.80	0.16	18.90	0.16	p =	0.6727
HLBDIMax40_Oct2016	20	14.90	0.43	13.70	0.42	p =	0.0019
HLBDIMax40_Jan2017	20	14.40	0.24	13.80	0.28	p =	0.1059
CopyNumberPer100ngDNA_May2016	20	19571.0 2	4404.41	28182.07	4421.76	p =	0.1492
CopyNumberPer100ngDNA_Jan2017	20	2254.08	441.41	1214.87	203.99	p =	0.0488
FruitDropPercent_Feb2017	20	17.52	1.38	13.76	1.04	p =	0.0171
YieldKg_Feb2017	20	56.20	2.95	65.77	2.62	p =	0.0071

Grower Bactericide Trials

Chanofusit		Control		Treatment			
Grapefruit	Ν	Mean	Std Error	Mean	Std Error		
HLBDIMax40_April201 6	40	16.68	0.15	16.85	0.12	p =	0.3867
HLBDIMax40_Sept2016	40	9.85	0.41	8.85	0.24	p =	0.0259
HLBDIMax40_Oct2016	40	10.20	0.49	9.13	0.32	p =	0.0573
HLBDIMax40_Nov2016	40	11.80	0.32	10.43	0.24	p =	0.0006
HLBDIMax40_Jan2017	40	13.98	0.69	11.98	0.53	p =	0.0145
HLBDIMax40_Jan30201 7	40	16.73	0.26	16.35	0.23	p =	0.2252
CopyNumberPer100ngD NA_April2016	40	195.04	157.75	973.99	825.81	p =	0.358
CopyNumberPer100ngD NA_Jan2017	40	113.10	40.27	174.99	72.51	p =	0.4591
FruitDropPercent_Jan201 7	40	55.44	3.50	37.56	2.61	p =	<.0001
YieldKg_Jan2017	40	30.09	2.79	44.73	2.59	p =	0.0001

Bactericide Delivery

- Are the bactericides effective, but delivery not?
 - Improved delivery may improve efficacy
 - Trunk injection has been evaluated in the past
 - Are new formulations more effective?
 - Less phytotoxic?
 - Concerns
 - Multiple injections are not economical
 - Residues
 - Modification of the pesticide label requires new residue study

Bactericide Delivery

- CRDF Field Trial Trunk injection versus foliar application
 - 2 Injection events versus three foliar applications
 - Results No significant improvement in health
- What next?
 - Change concentration?
 - Residue problem?
 - Change Volume?
 - Change Injection Technology
 - Are there other application technologies that will improve uptake?
 - More work to be done

Conclusions

- What is the role of bactericides in HLB management?
 - Effect bactericides may support the industry in the short-term
- Why do we still have so few bactericides?
 - New effective materials have a long timeline
 - Need significant financial support
 - Citrus is a minor crop
 - Regulatory
 - Important cross-resistance concerns/human health
 - Delivery
 - How do we deliver bactericides to the phloem?

Citrus Research and Development Foundation, Inc.

Thank you

CRDF is proud to provide support to the Florida citrus industry