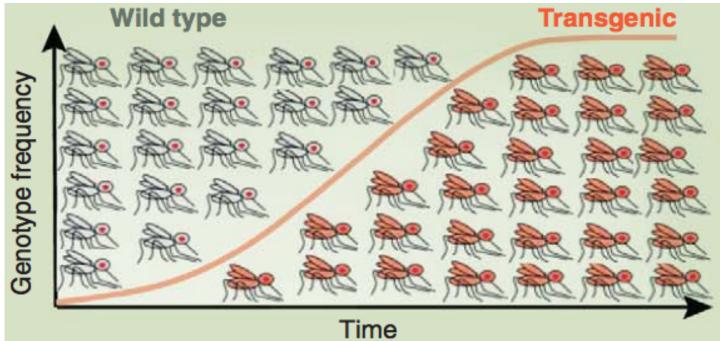
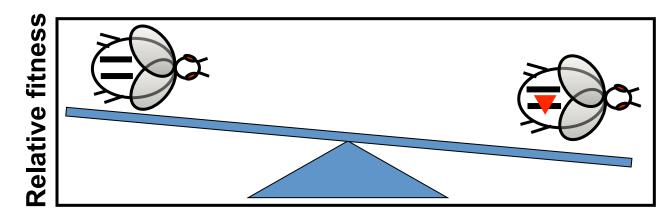
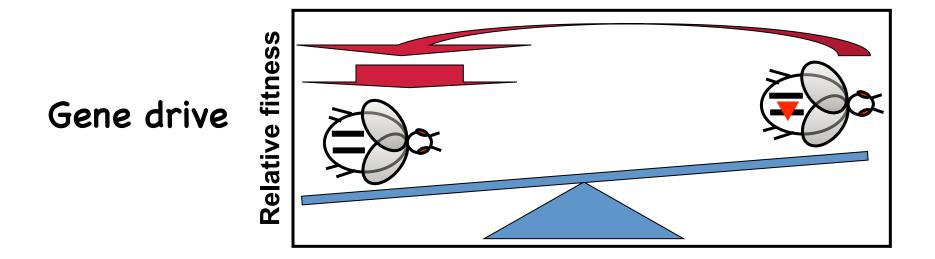
Traditional vector control measures to reduce disease transmission

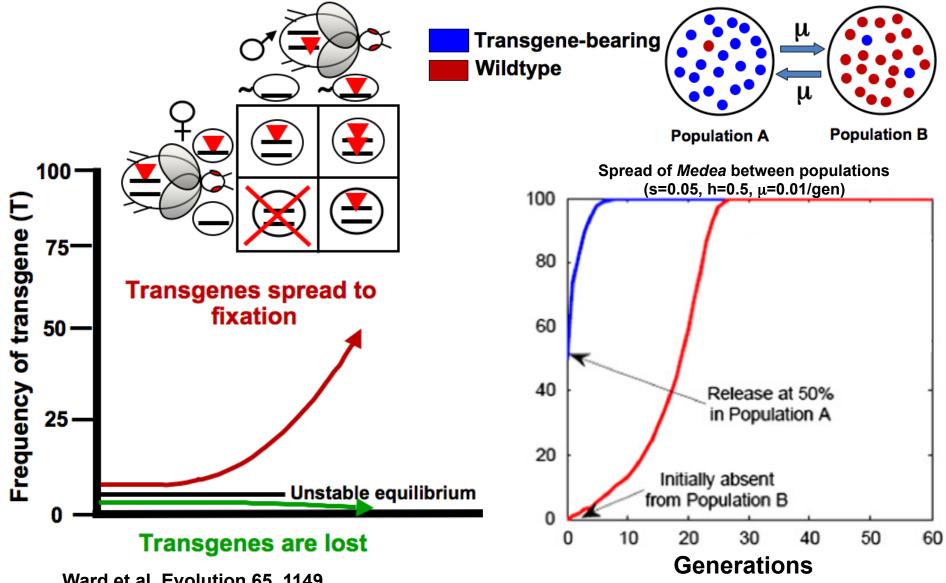

Insecticides

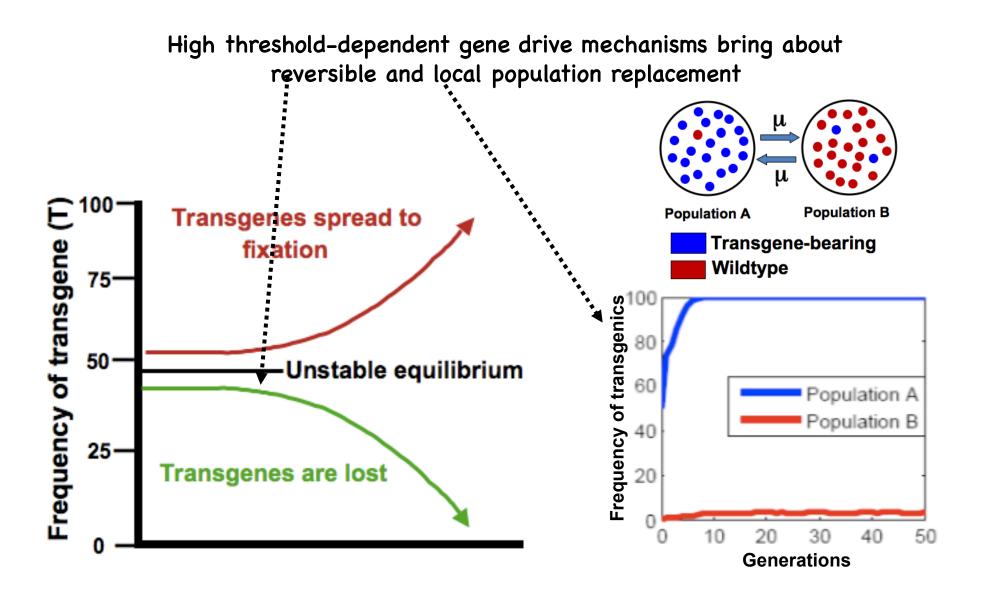
Biological control

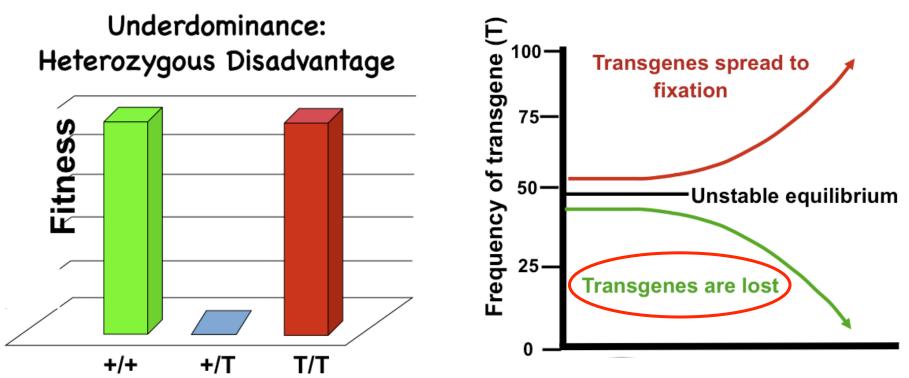

Traps

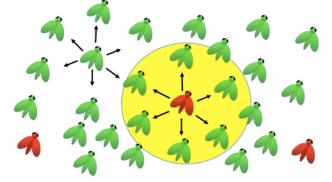
Trap crops Viruses

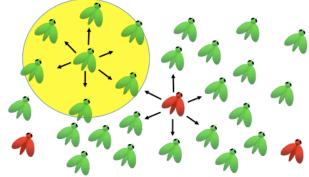

Population replacement to prevent remaining insects from transmitting disease


Problem: Genes that confer disease refractoriness are likely to result in a fitness cost to carriers

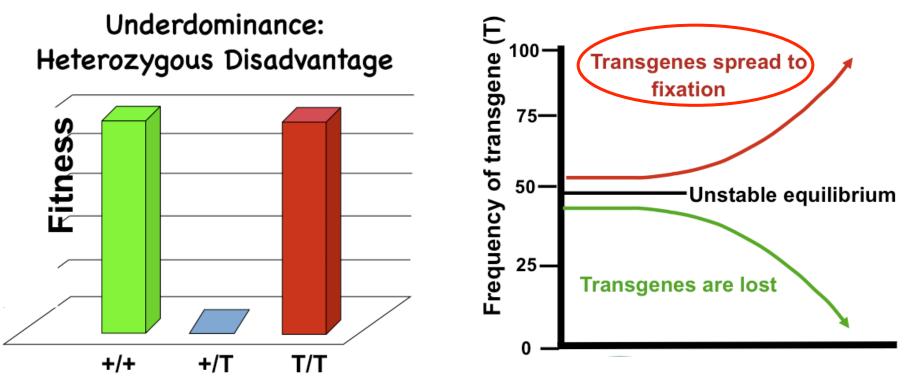

Solution: Increase the fitness cost associated with <u>NOT</u> carrying the gene of interest



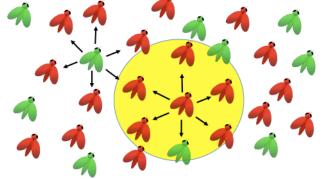

Ward et al. Evolution 65, 1149 Marshall and Hay, Journal of Theoretical Biol. 294, 153 Many social and regulatory environments will require that spread only occur locally, and that it be reversible

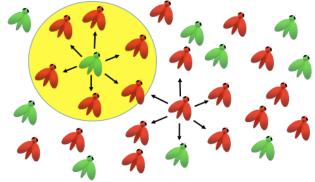


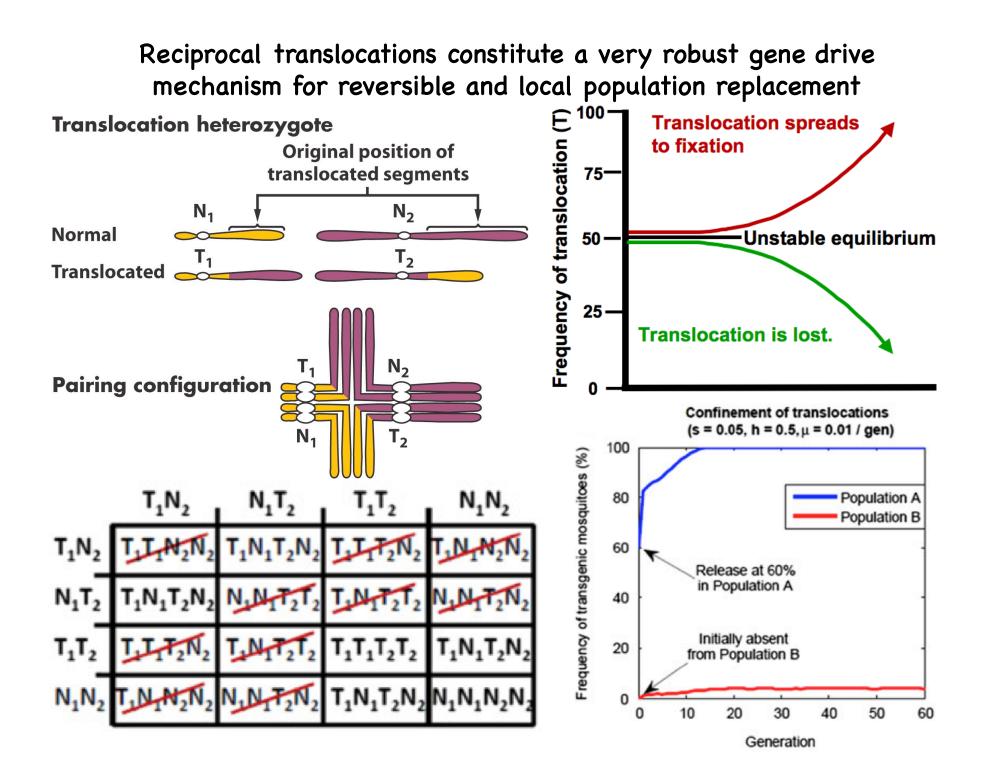
Underdominant systems show threshold-dependent, bi-stable behavior.



When wildtypes are common they mate mostly with each other, producing viable progeny carrying no transgenes.. Transgenics (T/T) mate mostly with wildtype, resulting in frequent loss of transgene-bearing chromosomes, and infrequent loss of wildtupe, non-transgene-bearing chromosomes, in unfit +/T heterozygotes. Transgenics are eliminated from the population.

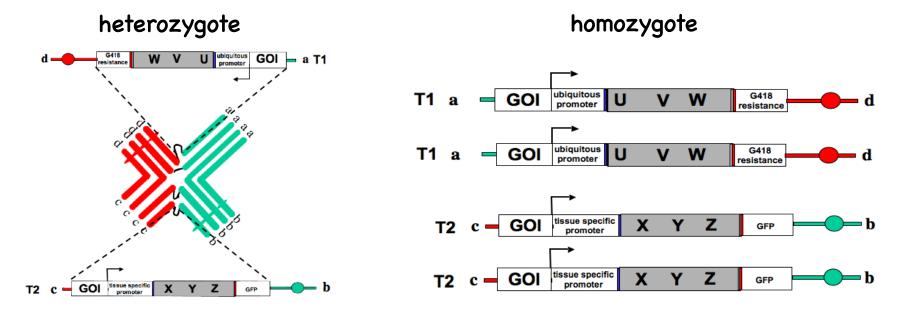




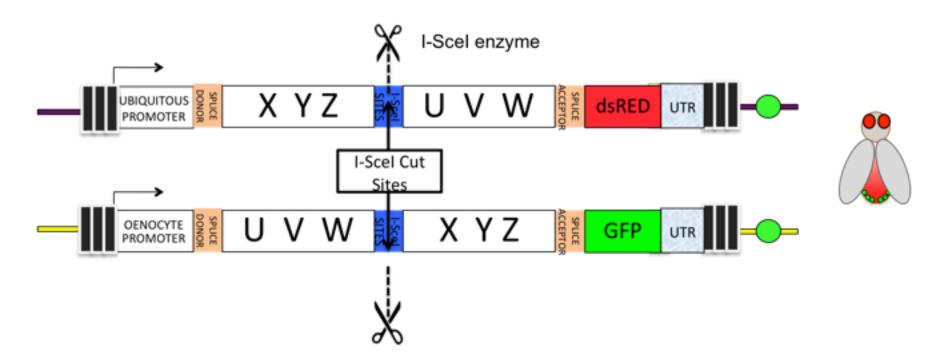

Underdominant systems show threshold-dependent, bi-stable behavior.

When transgenics (T/T) are common they mate mostly with each other, producing viable progeny carrying transgene-bearing chromosomes. Wildtypes (+/+) mate mostly with transgenics, resulting in frequent loss of wildtype chromosomes, and infrequent loss of transgene-bearing chromosomes, in unfit +/T heterozygotes. Wildtype chromosomes are eliminated from the population.

Useful characteristics of engineered translocations


1. Translocations are "natural", present in populations of all organisms

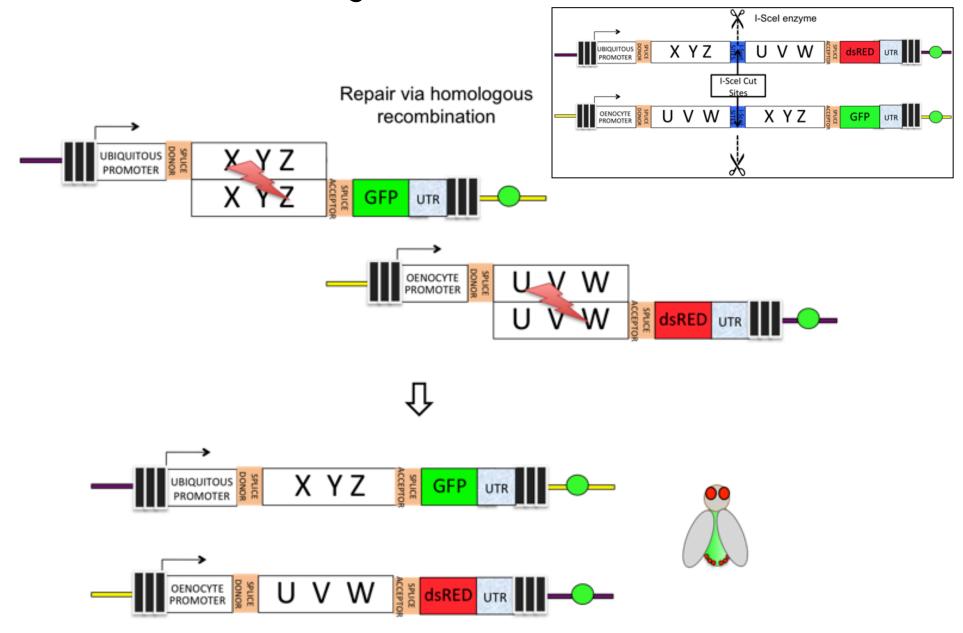
2. Translocations last (essentially) forever, and the GOI cannot recombine away when located at the breakpoint.


3. Translocation homozygotes carry two copies of each construct/chromosome, for a total of four GOIs

4. Local gene drive, and reversible through dilution

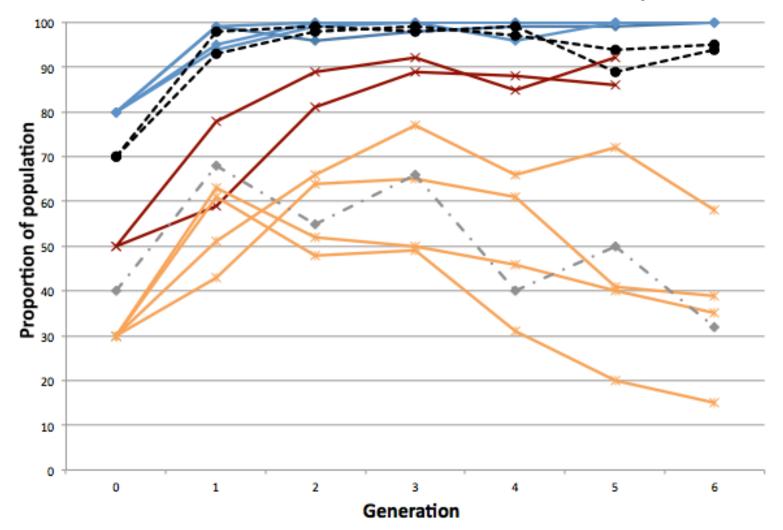
5. Can be created with limited knowledge about organism/ genome

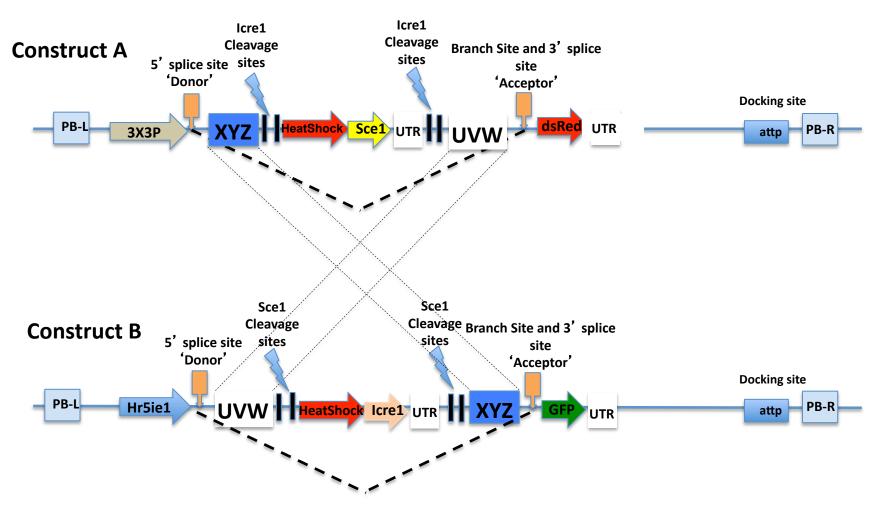
Building a translocation: 1



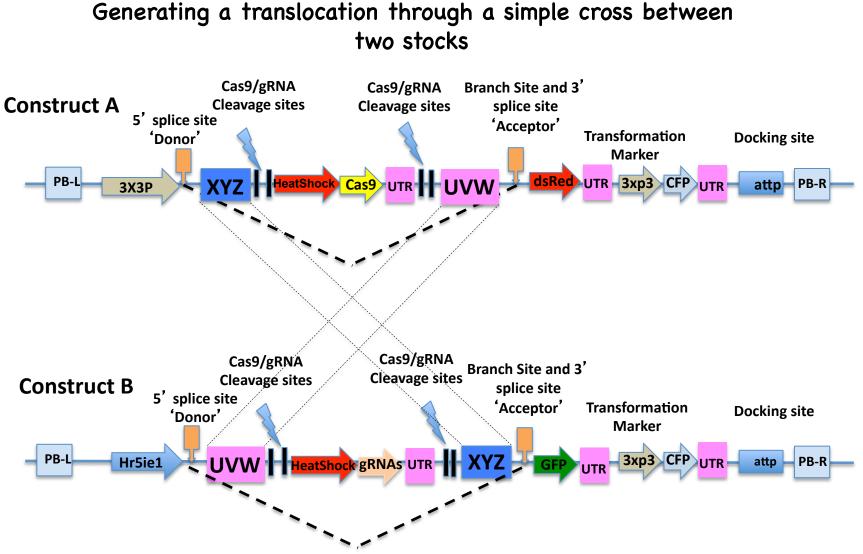
Generate stocks of each transgene-bearing chromosome.

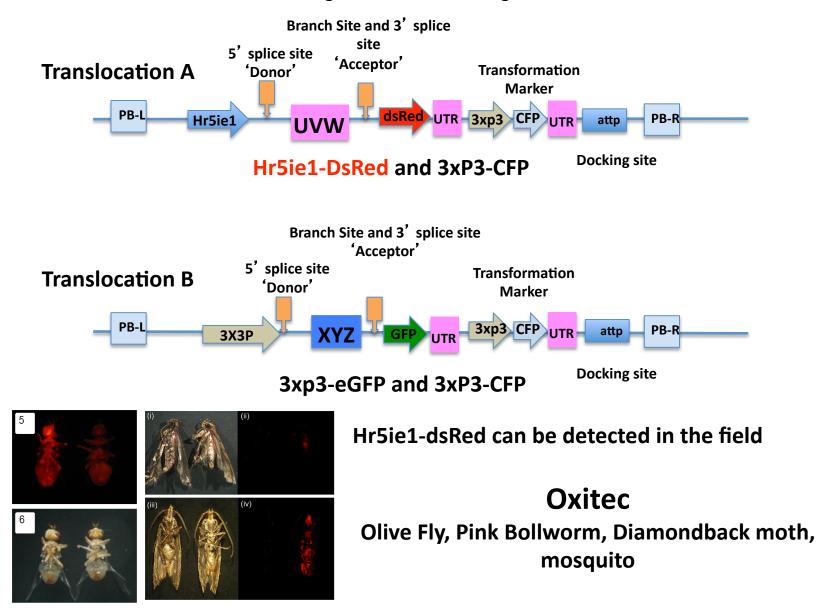
Cross these to each other, and a third stock carrying heat shock driven I-Sce. Heat shock progeny multiple times.


Outcross and look for recombinant chromosome-bearing progeny.


Building a translocation: 2

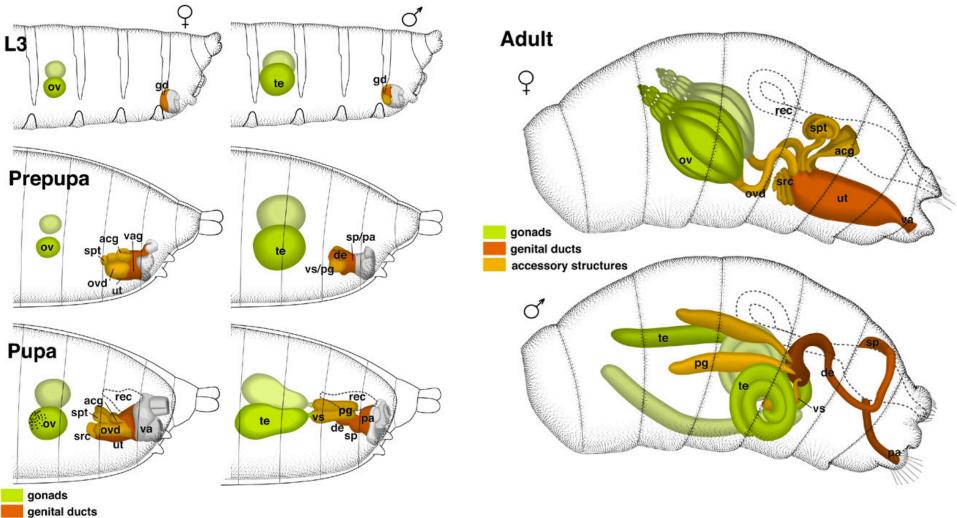
Translocation Drive


Release of males and female translocation flies at various frequencies

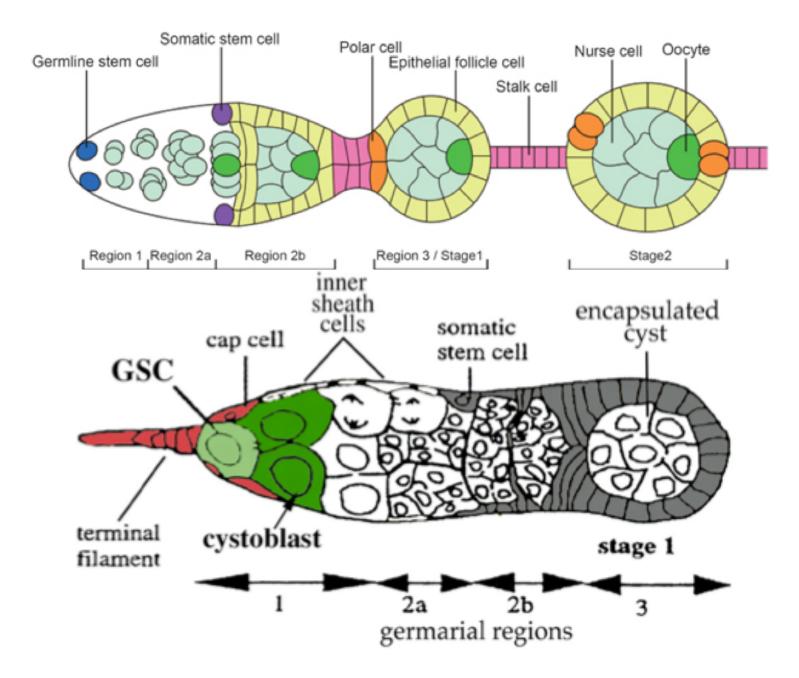


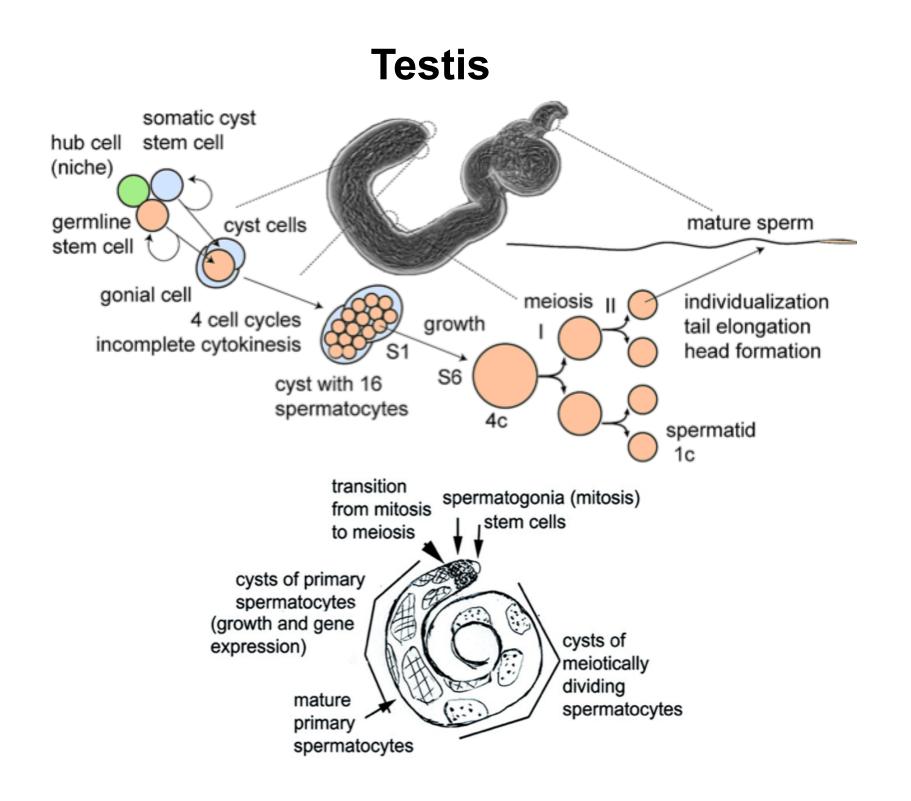
Generating a translocation through a simple cross between two stocks

- Randomly integrate using piggybac to generate insertions on different chromosomes.
- Cross together stocks and heat shock to induce breaks.
- Screen progeny for translocation chromosomes. Test fitness.
- These plasmids/component genes should work in many species



- Randomly integrate using piggybac to generate insertions on different chromosomes.
- Cross together stocks and heat shock to induce breaks.
- Screen progeny for translocation chromosomes. Test fitness.
- These plasmids/component genes should work in many species


Translocation chromosomes generated through recombination


Transgenesis through the adult; a fundamental difficulty in gaining access to the germline

accessory structures

Ovary

Transgenesis

Reporter gene

Gfp, tdTomato

Promoter driving reporter

Baculovirus Hr5ie1

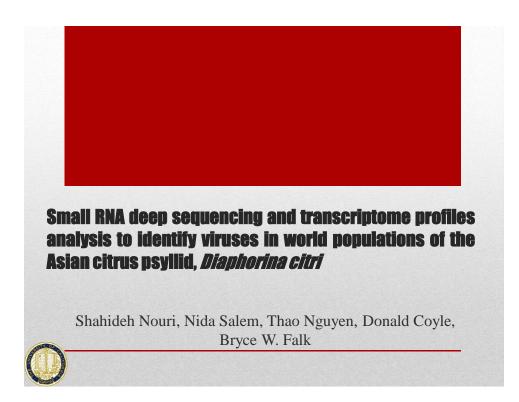
Ubiquitin

3x3p

Promoter driving transposase

Baculovirus Hr5ie1 Ribosomal protein

Ubiquitin


Delivery method

PEI

Jet prime PEI

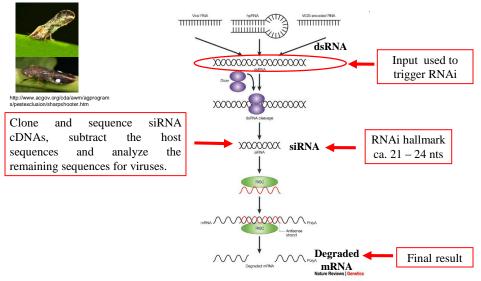
Ca+, cell penetrating peptide nanoparticles Pluronics 2 Baculovirus particles 1 with transposase 1 with transposon

Non-Plant based RNAi delivery

Can we achieve specific, systemic RNAi effects directly in hemipteran vectors without using plants to deliver the interfering RNAs?

Maybe we can use insect-infecting viruses

But where do we find them?

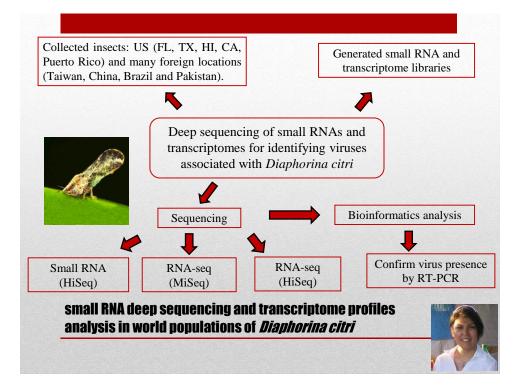

- Viruses are the most abundant microbes on the planet and many viruses are not pathogens and thus remain to be discovered.
- Next generation sequencing technology and bioinformatics tools offer powerful technique to discover novel viruses.
- If viruses can be identified, recovered and their genomes cloned as cDNAs to generate infectious viruses, then they can assessed for biological effects.

Our Rationale

Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs

Qingfa Wu^a, Yingjun Luo^a, Rui Lu^a, Nelson Lau^b, Eric C. Lai^c, Wan-Xiang Li^a, and Shou-Wei Ding^{a,1}

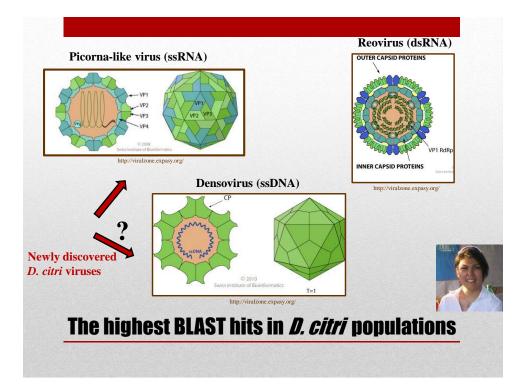
³Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521; ⁴Department of Biology, Brandeis University, Waltham, MA 02454; and ⁴Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065



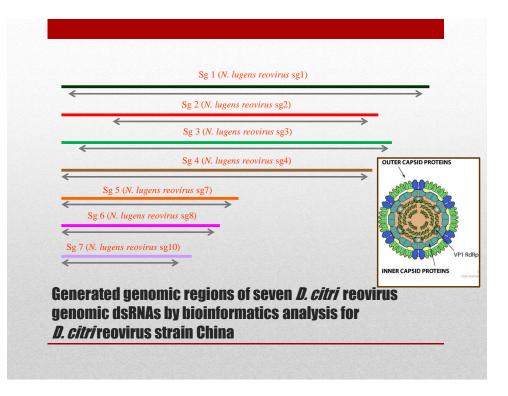
0.3

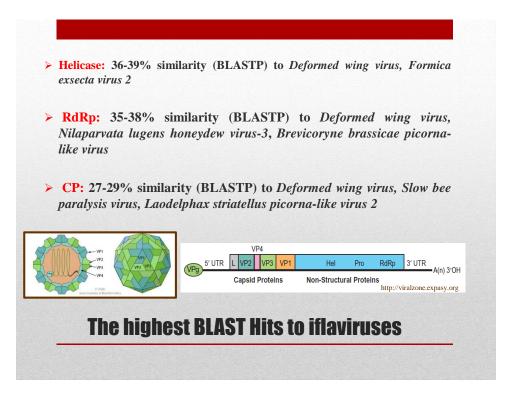
Discovery and Evolution of Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect Genomes

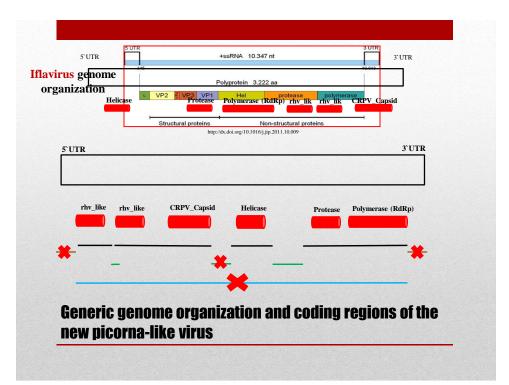
	TABLE 3 Significant tBLASTn 1	natches to phasmavirus genes in insect	sequence databases		
Anopheles maculatus	Host	Host common name	Host order	Gene(s) present	DNA
Anopheles exploritous Anopheles subphensi Anopheles subphensi Anopheles subphensi Anopheles diringi Anopheles diringi Ano	Dendrotstman ponderosae Chaoborn miristama Chaoborn miristama Dengobili sepsiana Dengobili sepsiana Anaphelas albopiena Anaphelas albopiena Anaphelas albopiena Anaphelas albonista Anaphelas albonista Anaphe	Mountain pine beetle Prinntom midge Print for Tigter mosquito Malarin mosquito Malarin mosquito Malarin mosquito Malarin mosquito Malarin mosquito Sand for Stalk-eyed fly Stalk-eyed fly Bitting midge Aasasin bog Petislo gall poptlid Asian ciras spellid	Colospitera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Dipiera Hemipiera	G, N RdBp, G, N RdBp, G, N N RdBp, G, N G, N G, N G G G, N N G G G G K M N N N N N N N N N N N N N	Y N N Y Y Y Y Y Y Y Y Y Y Y
Dendrocknis ponderosae Teleopsis damanni Oso Ades albopictus Cosophia wilistoni Orosophia albonicans Orosophia albonicans Orosophia albonicans Orosophia albonicans Drosophia mojavenis Drosophia Drosophia mojavenis Drosophia mojavenis Drosophia mojavenis Drosophia mojavenis Drosophia mo	Ever	n genome/transci find ne	riptome sequ ew viruses	iencing can	

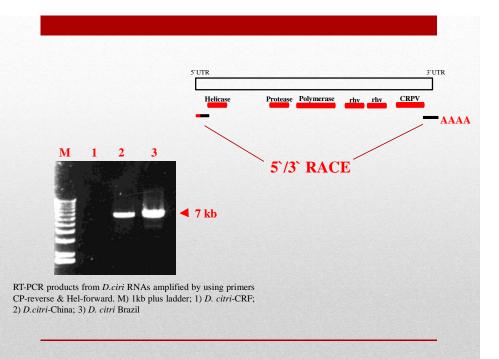


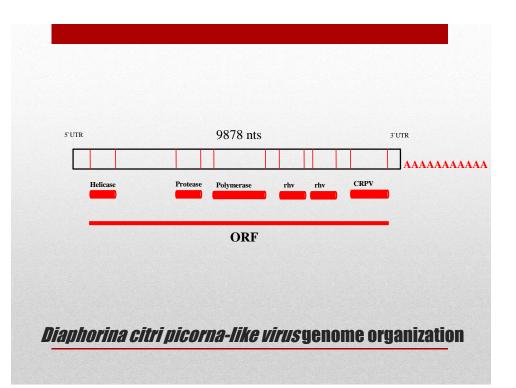
Name of Library	Number of reads	Avg. length	Number of reads after trim	Avg. length after trim	Number of reads after mapping to ACP transcriptome	Avg. length after map	Number of contigs
D. citri - China - 1	153,562,014	50.0	118,736,121	25.0	115,999,444	24.99	4,966
D. citri- Brazil - 1	195,655,932	50.0	101,869,794	25.5	98,131,266	25.45	6,932
D. citri – Florida - 1	210,667,442	50.0	190,207,640	26.3	184,436,525	26.29	11,972
D. citri - Taiwan	216,077,995	50.0	142,271,941	24.4	138,915,778	24.39	1,686
D. citri- Brazil - 3	In process	In process	In process	In process	In process	In process	In process
D. citri - China - 4	In process	In process	In process	In process	In process	In process	In process
D. citri - China - 5	In process	In process	In process	In process	In process	In process	In process
D. citri – Florida - 3	In process	In process	In process	In process	In process	In process	In process
D. citri – Hawaii	In process	In process	In process	In process	In process	In process	In process

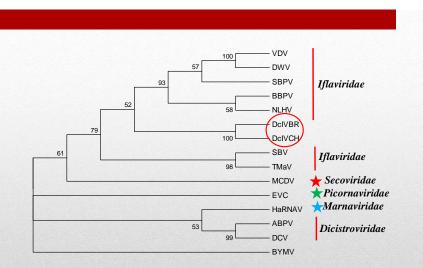

Statistical information derived through bioinformatics analyses

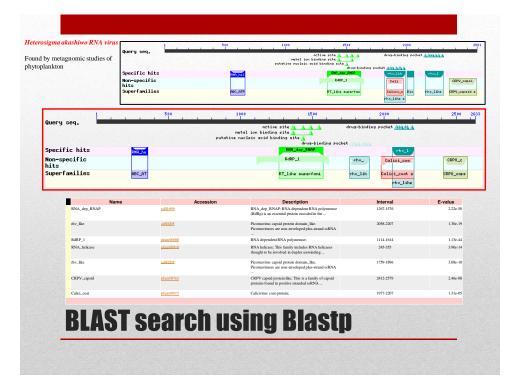



	-					
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Category	Family	Genus	Species	E-value	Population
+	dsRNA viruses	Reoviridae	Fijivirus	Nilaparvata lugens reovirus	0.0	CH, TW, FL
	dsRNA viruses	Reoviridae	None	Diaphorina citri reovirus	6.59e-132	CH, TW, FL
\longrightarrow	ssRNA viruses	Iflaviridae	Iflavirus	Deformed wing virus	5.56e-21	BR, CH, TW
	ssDNA viruses	Parvoviridae	Iteradensovirus	Helicoverpa armigera Densovirus	4.21e-46	BR, CH, TW, FL
sect viruses	dsDNA viruses	Polydnaviridae	Bracovirus	Cotesia congregate bracovirus	1.95e-95	BR, CH, TW, FL
	dsDNA viruses	Baculovirus	Alphabaculovirus	Autographa californica multiple nucleopolyhedrovirus	4.32e-90	BR, CH, TW, FL
	ssRNA viruses	Bunyaviridae	None	Kialuaik phantom virus	7.59e-37	СН
	ssRNA virus	None	None	Chronic bee paralysis virus	6.15e-04	СН
acteriophage	dsDNA viruses	Unclassified phages	None	Wolbachia endosymbiont of Culex quinquefasciatus WO prophage	2.1e-130	BR, CH, TW, FL
1	ssRNA viruses	Luteoviridae	Polerovirus	Potato leafroll virus	5.62e-46	CH, FL
lant viruses	dsRNA viruses	None	None	Gentian kobu-sho-associated virus	2.74e-51	FL
	ssRNA viruses	Virgaviridae	Tobamovirus	Cucumber green mottle mosaic virus	5.65e-45	BR
	ssRNA viruses	None	Umbravirus	Carrot mottle virus	4.76e-53	BR
İ	ssRNA viruses	Flaviviridae	Pestivirus	Bovine viral diarrhea virus 1	1.49e-48	BR, CH, TW, FL
nimal viruses	dsDNA viruses	Herpesviridae	Macavirus	Bovine herpes virus 6	4.23e-100	BR, CH, TW, FL
	Retro- transcribing virus	Retroviridae	Alpharetrovirus	Avian leukosis virus	2.069e-68	BR, CH, TW, FL
arine viruse	dsDNA viruses	Phycodnaviridae	None	Organic Lake phycodnavirus 1	9.79e-30	BR, CH, TW, FL




	Sample	Collector	NGS Pla	tform		Id	entified V		
			HiSeq	MiSeq	HiSeq	DCPLV	DcRV	DcDV	
			small RNA	RNA-	RNA-				
				seq	seq				
	Taiwan 1	H.H.Y.	+	-	-	+	+	+	
	Taiwan 2	H.H.Y.	-	-	-	-	+	+	
	China 1	YC HW	+	+	-	+	+	+	
	China 2	YC HW	-	-	-	+	+	+	
	China 3	YC HW	-	-	-	+	+	+	
	China 4	YC	-	-	+	+	+	ND**	
	China 5	YC	-	-	+	+	-	ND	
	Brazil 1	TS	+	-	-	+	-	+	
	Brazil 2	DMG	-	-	-	+	-	+	
	Brazil 3	DMG	-	-	+	+	-	ND	
	Pakistan	AMK	-	-	-	-	-	+	
	Florida 1	WOD	+	+	-	-	+	+	
	Florida 2	WOD	-	-	-	-	+	+	
	Florida 3,4,5,6	KPS	-	-	(3)+	+/-	+	ND	
	Florida	KPS, BF,	-	-	-	-	+	ND	
	7,8,9,10,11,12	RP							
	Puerto Rico 1,2,3		-	-	-	-	+	ND	
	California 1	DM	-	-	-	-	-	+	
	California 2	DM	-	-	-	-	-	+	
uses confirmed	California 3	DM	-	-	-	-	-	+	MARCH
RT-PCR and er sequencing	California 4	DM	-	-	-	-	-	+	
ot Done.	Hawaii-Aiea	СН	-	-	+	-	+	+	
	Texas 1	AC	-	-	-	-	-	+	- 100
	Texas 2	AC	-	-	-	-	-	+	
	CRF	KG	-	-	-	-	-	+	V





Phylogenetic tree constructed with the amino acid sequences of the RdRp by the NJ method.

DWV: Deformed Wing Virus; VDV: Varroa destructor virus; SBPV: Slow bee paralysis virus; BBPV: Brevicoryne brassicae picorna-like virus; NLHV: Nilaparvata lugens honeydew virus; SBV: Sacbrood virus; TMAV: Tomato matilda virus; ABPV: Acute bee paralysis virus; DCV: Drosophila C virus; MCDV: Maize chlorotic dwarf virus; EVC: Enterovirus C, HaRNAV: Heterosigma akashiwo

P	icornaviridae Aphthovirus	PES twn (w2 wm 3.6 3.	Nerovirus, Versielus 06F1 ORF3 Wel VPg Pro POL CP
	alciviridae	Polyprotein MACD JAAC SAGCD 14AC BB JA SAGC 14AC BB JA SAGC	versioner and the second secon
P	otyviridae	Wei Mail Mail <thm< td=""><td>Polyprotein PIPO</td></thm<>	Polyprotein PIPO
	ecoviridae Comovirus Fabavirus Nepovirus	Secoviridae Cowpea mosaic virus (NPMV) RNA-1 (5.84b) RNA-1	Prison HCom (Fig. 1) Prison HCom (Fig. 1)
	Torradovirus	RNA-2 (3.3kb)	Dicistrovirida
L	Dicistroviridae Aaparavirus Cripavirus	(PP) CPL CPS (3)	Actute bee paralysis virtus PRES hear britform of Reademands CPC ORF1 CPC ORF2 CPC ORF3 CPC ORF2 CPC ORF3 CPC ORF3 C
IJ	flaviridae Iflavirus	<i>Iflaviridae</i> VP4	Steel PRO RdRp CP1 CP2 CP3
A .	larnaviridae Marnavirus	5' UTR L VP2 VP1 Hel Pro RdRp Capsid Proteins Non-Structural Proteins	3' UTR_A(n) 3'OH
		http://viralzone.expasy.or	g

Summary

- We have analyzed *D. citri* populations from 4 states, Puerto Rico, and 4 countries for *D. citri*-infecting viruses.
- 3 viruses have been confirmed and we are focusing our efforts on a new virus, *Diaphorina citri picorna-like virus* (DCPLV).
- DPCLV does not appear to be common in U. S. D. citri populations.
- We have generated the complete nucleotide sequence of DCPLV (we think)
- We have obtained a USDA APHIS permit to perform biological studies with DCPLV within the UC Davis BSL3P Contained Research Facility.

Generating full length cDNAs to DCPLV.

- > Assess the infectivity and efficiency of the wild DCPLV (Infectious virus) in cultured psyllids.
- Engineer the DCPLV for delivering RNAs/proteins to *D.citri*. We will generate recombinant DCPLV (inserting the target insect mRNA sequences into virus) in transfected GWSS-Z15 or Sf9 cells. The recombinant virus will induce VIGS (Virusinduced gene silencing), and a negative phenotype.
- > We are mining our data for additional potentially useful *D. citri* viruses.

Future Directions

Citrus greening/Huanglongbing (HLB)

- Causal agent: Candidatus Liberibacter species
- HLB distribution in America: Continental USA, Caribbean, Central America, Mexico, Brazil
- HLB management: mainly insecticides & tree removal: \$ 600 1000 per acre
- Economic impact of HLB on Florida citrus industry:

Loss of \$ 4.5 Billion between 2006 -2011 (~ 16% loss)(Hodges & Spreen 2012) Hodges & Spreen 2012: EDIS Publication #FE903, UF IFAS Extension Program, http://edis.ifas.ufl.edu/fe903

Middle Photo Source: EPPO https://www.eppo.int/QUARANTINE/bacteria/Liberobacter_africanum/LIBESP_images.htm

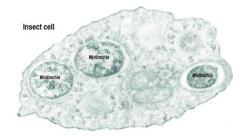
Citrus Greening Disease

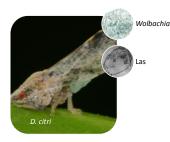
The vector

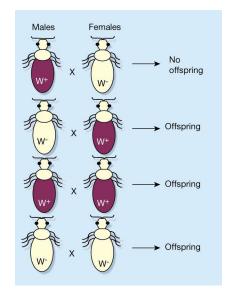
- Asian citrus psyllid, *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae)
- Discovered in Florida June 1998
- Host range includes 25 genera of Rutaceae, including *Citrus*

HLB management:

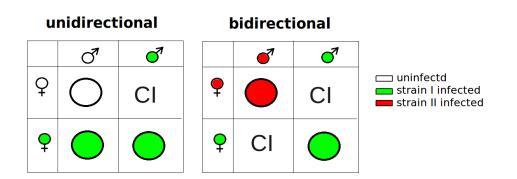
- Psyllid management (area-wide control)
- Management of infected plants, replanting


Endosymbionts:


- Ca. Profftella armatura
- Ca. Carsonella ruddii
- Wolbachia pipientis

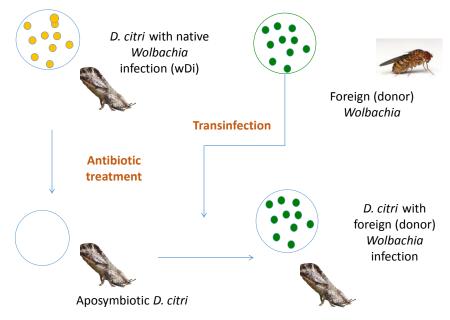


Wolbachia



- A widespread intracellular bacterium, carried by an estimated 40% of insect spp.
- May interact with pathogens, effecting the probability of transmission (e.g. competitive exclusion, immune activation)
- Approach used in insect vectored human pathogen systems

Cytoplasmic Incompatibility


Cytoplasmic Incompatibility

Wolbachia for psyllid management: approach

- Identify geographic variation in *Wolbachia* infections among field populations
- Identify endemic *Wolbachia* types that reduce Las transmission/fitness
 Minor strains good candidates for mass releases
- Develop breeding lines of *Wolbachia*-(co)infected and *Wolbachia*-free ACP: selective breeding and antibiotic treatment
- Establish stable somatic infections of non-native *Wolbachia* strains with infected insect cell cultures
 - Las transmission
 - fitness
 - cytoplasmic incompatibility (CI)

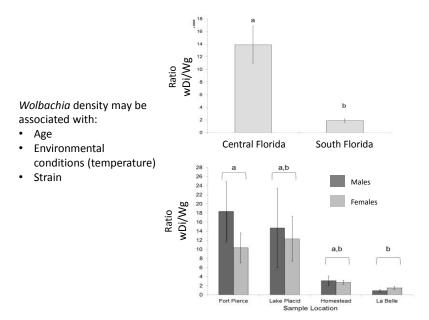
Bacterial Driver

Objectives

1. Characterize diversity of *Wolbachia* in Florida *D. citri* populations by multilocus sequence typing (MLST)

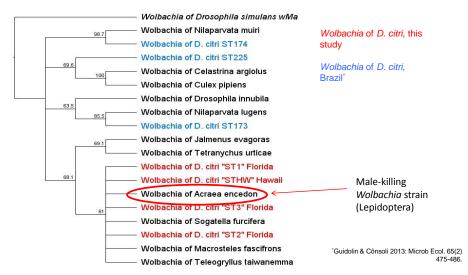
- *D. citri Wolbachia* Sequence Types (ST) characterized by identification of accumulated nucleotide differences in five conserved genes
- Differences determined by comparing consensus sequences to MLST sequence database
- 5 MLTS genes: coxA, hcpA, ftsZ, gatB, wsp
- 10-33 individuals from 9 populations in Florida, 1 population from Hawaii

4

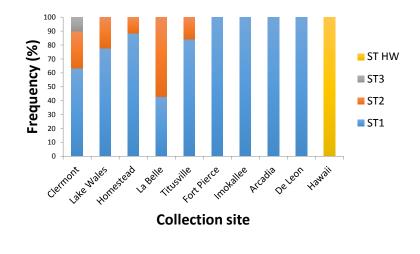

Objectives

2. Determine within-host densities of endosymbionts: *Wolbachia, Ca.* Proftella armatura and *Ca.* Carsonella ruddii

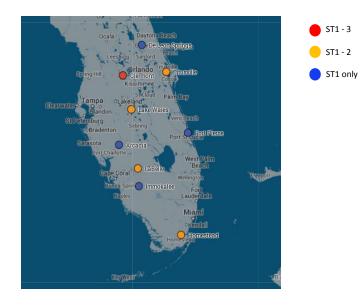
- Age (developmental stage)
- Geographic distribution of *D. citri*
- Relationship with *Wolbachia* sequence type

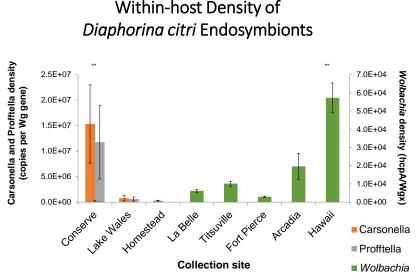


4


Geographic variation of Wolbachia infection density

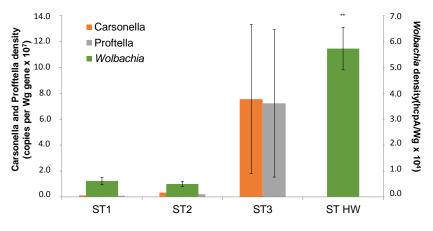
Phylogenetic relationships of *Wolbachia* sequence types (STs) associated with Florida *D. citri*



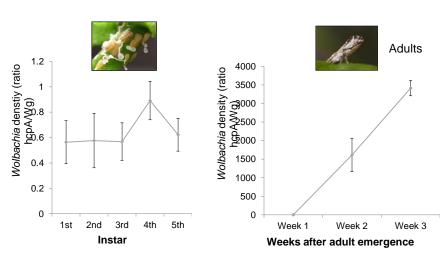

Neighbor-joining tree, cytochrome C oxidase gene, bootstrap values indicated at branches

Relative distribution of associated *Wolbachia* sequence types in *D. citri* populations

Occurrence of *Wolbachia* sequence types in Florida *D. citri* populations



Within-host Density of


Wolbachia densities and Ca. Profftella/Carsonella densities are inversely related

7

Inverse relationship between Carsonella/Profftella and Wolbachia ST3

Wolbachia sequence type

Wolbachia titer increases with age

• Wolbachia density is low during larval development and increases following emergence

9

Conclusions

- Three sequence types of Wolbachia in D. citri populations in Florida
- One predominant sequence ST in all populations
- Minor ST a candidate for bacterial drive
- *Ca.* Carsonella ruddii / *Ca.* Profftella armatura and *Wolbachia* densities differ geographically
- Inverse relationship between *Wolbachia* and *D. citri* endosymbionts in adults
- Inverse relationship with endosymbionts associated with *Wolbachia* sequence type
- *Wolbachia* densities low during larval development and increase during adulthood

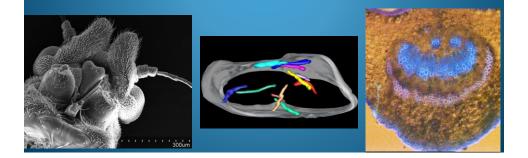
Ongoing Work

- Introduction of antibiotic cocktail in nymphal diet insufficient for removal of *Wolbachia*
- Currently targeting *Wolbachia* for silencing with RNAi
- Successful introduction of drosophila, mosquito *Wolbachia* strains using microinjection, nymph diet
- Evaluating efficiency of establishment in offspring, CI
- Confirmed establishment of isofemale line infected with ST3 (ILST3)
- Transmission efficiency by ILST3 line and transformed *D. citri*
- Competition among *Wol* strains/endosymbionts

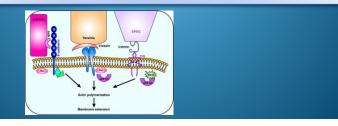
Russell et al. 2015

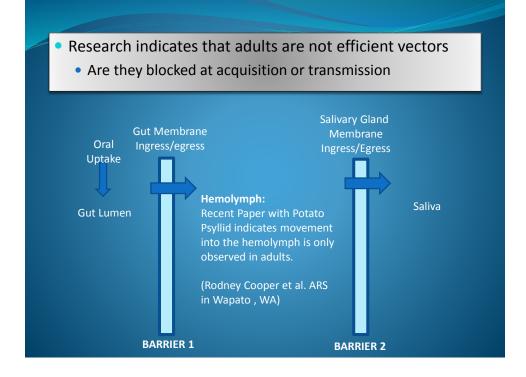
Thank you!

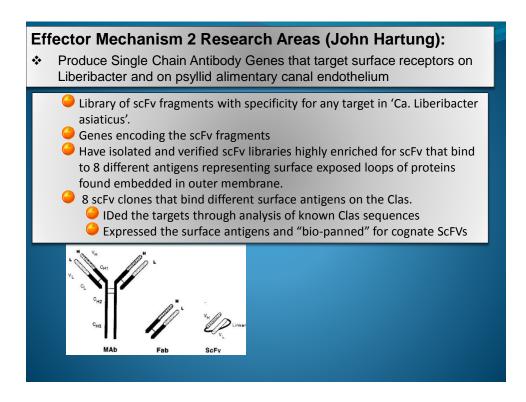
Funding:

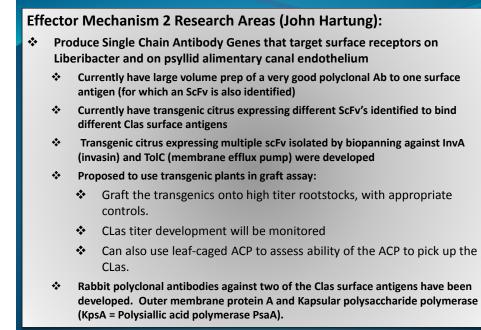


United States Department of Agriculture National Institute of Food and Agriculture


NuPsyllid: Effectors Mechanism 2


Robert Shatters (USDA, ARS) El-Desouky Ammar (USDA, ARS) John Hartung (USDA, ARS) Marc Giulionatti (TPIMS)




Effector Mechanism 2 Research Areas:

- Produce Single Chain Antibody Genes that target surface receptors on Liberibacter.
- Develop peptide library to identify peptides that bind gut membrane surfaces.
- Develop assay to screen for antibodies/peptides that inhibit Liberibacter-psyllid membrane interactions
- Test selected antibodies/peptides for inhibition of Liberibacter transmission

Effector Mechanism 2 Research Areas:

- Develop peptide library to identify peptides that bind gut membrane surfaces.
- Develop assay to screen for antibodies/peptides that inhibit Liberibacter-psyllid membrane interactions
- Test selected antibodies/peptides for inhibition of Liberibacter transmission

ł			os	itio	na	al	S	ca	nn	in	g	Li	br	ar	y	
C'	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	N'	Amount (mg)
- NH2	x	x	x	X											NH2	40.9
NH2	x	x	x	x	-		-			+	+	-			Biotin	40.3
NH2	x	x	x	x	Gly	Gly									Biotin	41.5
NH2	x	x	x	x	x										NH2	40.5
NH2	x	x	x	x	х										Biotin	40
NH2	x	x	x	x	x	Gly	Gly								Biotin	40.9
NH2	x	x	x	х	х	x									NH2	40.4
NH2	x	x	x	х	x	х									Biotin	40.7
NH2	х	х	x	х	х	х	Gly	Gly							Biotin	40.8
NH2	x	x	x	х	x	х	x								NH2	40.1
NH2	x	x	х	х	x	х	х								Biotin	41
NH2	x	x	х	х	х	х	х	Gly	Gly						Biotin	39.7
NH2	x	x	х	х	х	х	x	x							NH2	40.8
NH2	x	x	x	х	х	x	x	x							Biotin	40.7
NH2	x	x	х	х	х	х	х	х	Gly	Gly					Biotin	40.2
NH2	x	x	x	х	х	х	х	х	х						NH2	40.5
NH2	х	x	х	x	х	х	x	х	х						Biotin	40.2
NH2	x	x	x	х	x	х	x	x	х	Gly	Gly				Biotin	41
NH2	x	x	x	x	x	x	x	x	х	x					NH2	40.1
NH2	х	x	x	х	х	x	x	x	х	х					Biotin	40.8
NH2	х	х	х	х	х	х	х	х	х	х	Gly	Gly			Biotin	41.5

Screening Process Resulted in Detection of 8 Peptides that Bind the Psyllid Gut Epithelium

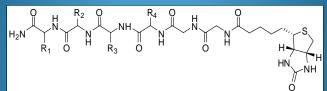
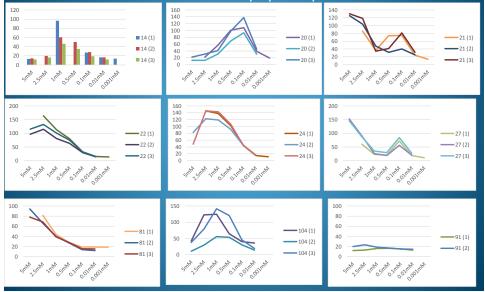
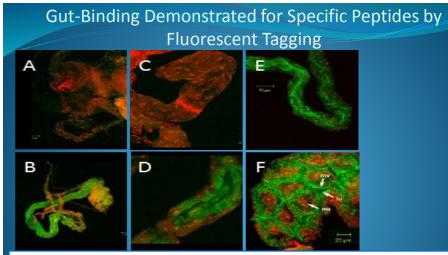


Figure 1. Structure of peptide library used in our screening assay to identify digestive tract binding peptides. The R represents the side group of any of the 20 amino acids. The four variable amino acids are separated from the biotin moiety by two glycine residues.

96-well plate assay for rapid screening

Psyllid gut membrane prep and binding protocol

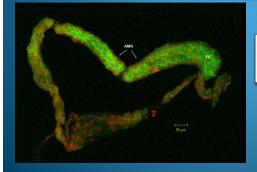

Preparation of gut membranes


- Adult psyllid guts are dissected placed in pH 6.5 buffer and stored at -20°C.
- Homogenize, centrifuge, briefly sonicate, re-centrifuge.
- Resuspend the pellet in 0.1 ml TBS (20 mM Tris-HCl, 500 mM NaCl, pH 7.0): 2 μ l of gut-membrane preparation is equivalent to one gut.

Peptide binding to gut membranes

- Binding assays are carried out in filter bottom 96-well plates
- Add the gut membranes (4 per well) and wash three times with 100 μl TBS, pH 7.0.
- Add the peptides and wash.
- Add Alexa Fluor 488, Wash 3 times.
- Wells are ready to be viewed fluorometrically.

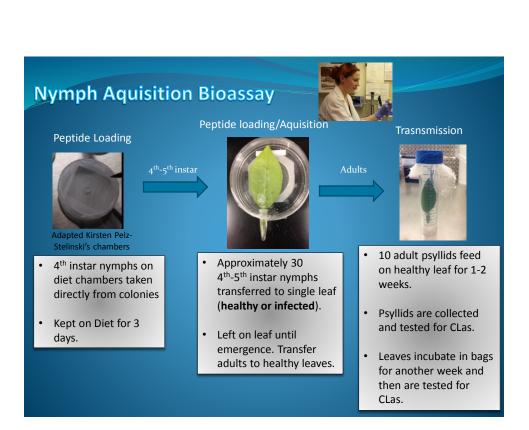
Concentration Effect on Gut Membrane Binding: All peptide show different binding kinetics related to concentration of peptide present

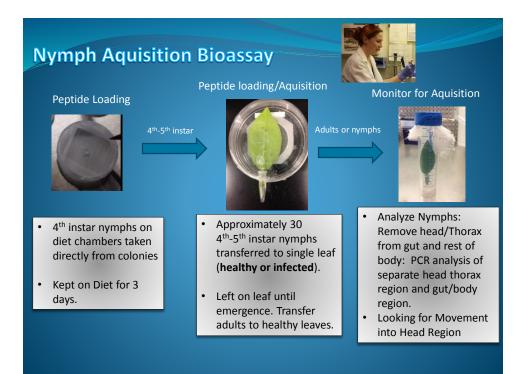


Psyllid Digestive tract membrane binding of biotinylated peptides after feeding and clearing. ACP nymphs were fed on artificial diet for four days and transferred to diet alone to clear unbound peptide. Entire digestive tracts were dissected, fixed and stained for peptide using Alexafluor-488-streptavidin (green). Confocal microscopy of tissues backstained in (red) showing endothelial cells and nuclei. (A) Control of psyllids fed non-binding biotinylated peptide. (B) Psyllids fed mixture of all peptides in library. (C) increased magnification to show binding to lumen side of endothelium. (D) control for (C). (D and E) gut lumen binding if one of the 21 identified gut binding peptides showing intense binding in the brushborder membrane area.

Peptides Were Shown to Bind Nymph Gut Membranes As Well As Adult

ACP 4th instar nymphs that fed on peptide-diet (for 4 days) then cleared by feeding on excised healthy leaves (for 3 days).


Confocal Results (10/16/14):



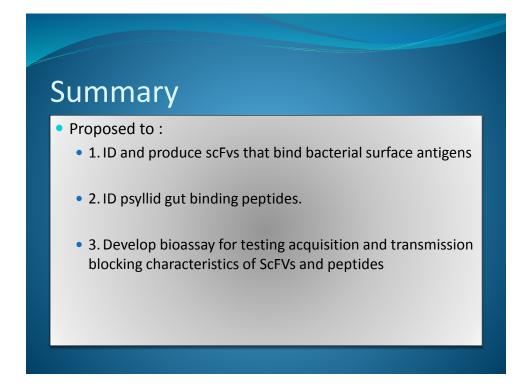
Binding Was observed in psyllids that remained as nymphs and psyllids that had emerged as adults

Effector Mechanism 2 Research Areas:

- Develop peptide library to identify peptides that bind bacterial and/or gut membrane surfaces.
- Develop assay to screen for antibodies/peptides that inhibit Liberibacter-psyllid membrane interactions
- Test selected antibodies/peptides for inhibition of Liberibacter transmission

Peptide 14 Consistently Induced Psyllid Mortality When Fed to 4th Instar Nymphs

4 Days on Diet to monitor mortality


Consistent Problem: High Mortality in Diet only Controls. Note: We saw the same thing with RNAi feeding, but efficacy greatly improved when we were able to move to the whole plant assay (CTV expression system)

Overall Results With Bioassay

				% of Leaves
				Testing
		Positives:		Positive for
% Psyllids	% Psyllids	Posterior/Abdome	Positives: Anterior/Head-	Clas
recovered	Clas +	n Detection	Thorax Detection	(Transmission)
~10-20%	21%	67%	33%	~10%

• We do see acquisition and transmission.

 33 to 50% of experiments fail due to high nymph mortality.

Summary

To Date:

- 1. ID and Produce ScFV's that binding bacterial surface antigens (John Hartung)
 - Specific Clas surface antigen binding ScFvs have been identified.
 - Stability in culture production has been problematic
 - However, transgenic citrus are now available expressing these (Collaborative work with John Hartung and Ed Stover).
 - These citrus are available for testing effect on Clas replication in the plant and acquisition/transmission analysis.

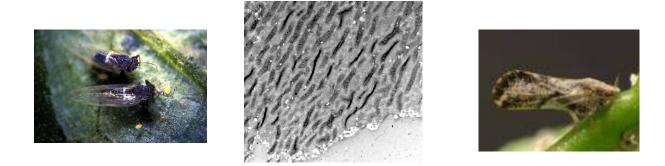
Summary

Proposed to :

- 2. ID psyllid gut binding peptides.
 - We have IDed 8 gut binding peptides and shown that they bind adult and nymph gut membrane preparations and intact adult and nymph epithelial layer.
 - Different binding kinetics and different fluorescent pattern of binding suggest at least some differences in interaction that may reflect different targets.
 - Low concentration binding is encouraging
 - At least one of these peptides shows reproducible toxicity to nymphal psyllids.

Summary

Proposed to :


- 3. Develop bioassay for testing acquisition transmission blocking characterisics of ScFVs and peptides.
 - Bioassay development has been the most challenging.
 - Kirsten Stelinski's chamber design has helped tremendously
 - High mortality continues to cause problems and requires us to do high number of replications.
 - We do have a working bioassay and we have shown we can monitor acquisition by looking for movement of Clas into the salivary glands (head/thorax) of psyllids
 - Currently testing peptides in this assay.

Next Steps:

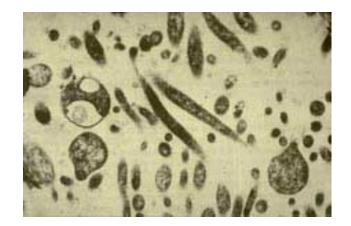
- Test Transgenic citrus expression Clas surface antigen ScFV's?
- Need to finish competition studies with peptides:
 - Unbiotinylated vs biotinylated.
- Screen peptides in acquisition/transmission bioassays
- Psyllid toxicity of peptide 14?
 - Could be moved into transgenic citrus test? (nuclear or CTV?)

Outside the scope of the grant objectives-but advancement of findings

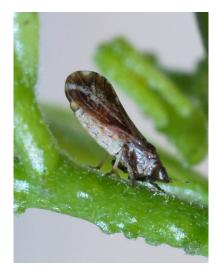
- Continue characterizing the peptide binding kinetics.
- Working collaboratively with Michelle Cilia on identifying the targets in the insect digestive tract that are binding the peptides.
- Determine if transgenic expression (nuclear or CTV) are viable alternative strategies for psyllid control.
- Screen of scFv transgenic citrus for effect on acquisition/transmission.

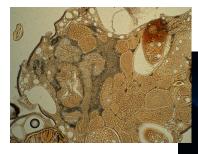
Psyllid transcripts with potential involvement in *Ca.* Liberibacter invasion and propagative transmission: Toward RNAi mediated abatement of citrus greening and zebra chip diseases

Judith K. Brown et al School of Plant Sciences University of Arizona Tucson AZ USA



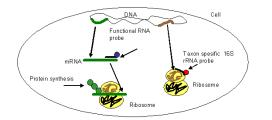
Multiple approaches: (i) stalking the transmission pathway of the causal microbe of HLB...






an exotic microbe

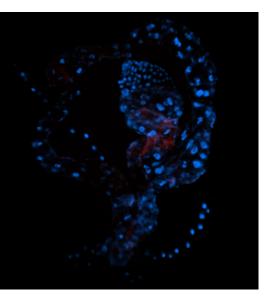
and an equally exotic psyllid vector


PoP anatomy and Lso Localization (FISH)

V1

1. Fluorescent and gold-silver enhancement labeling in salivary glands

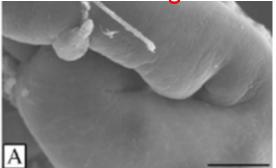
FISH

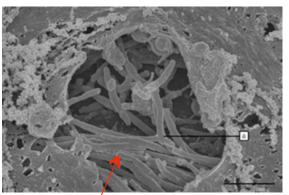

-Carnoy's fixative -16S rRNA probe with Cy5 tag (red) >20 pmol/ml overnight

 Fluorescent signal in gut (V1 section is shown, right)

Cicero, Brown et al., unpublished

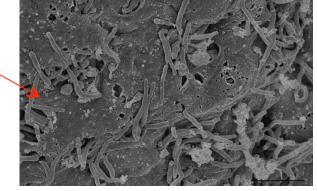
Salivary glands

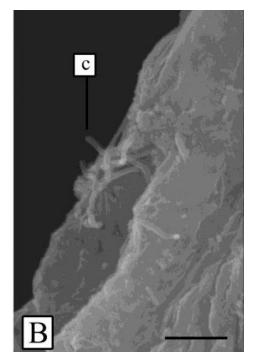



V3

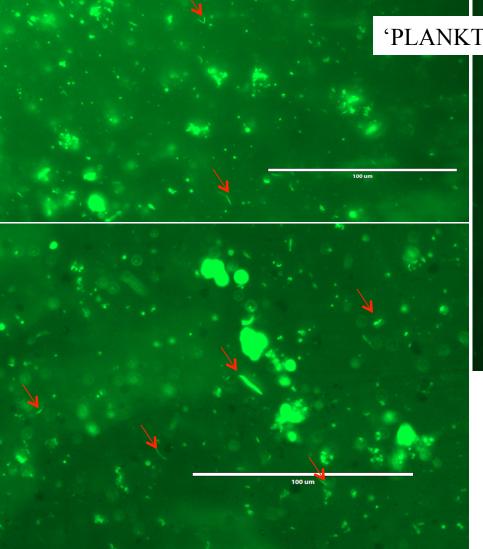
V2

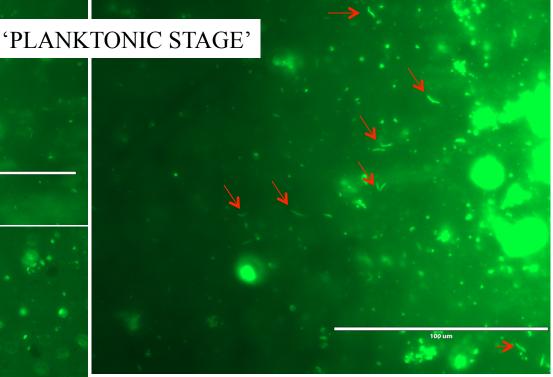
CLso localization in PoP (SEM)


uninfected gut


Lso bacteria

infected gut


Liberibacter is seen in the esophagus and in the alimentary canal (gut)


infected esophagus

Cicero, Brown et al., submitted

Motile stage in SYTO13 stained extracts from infected psyllid gut

Presence of long rod shaped

•Liberibacter from infected gut

•Evidence of cells dividing?

(M. Vyas, T. Fisher, J.K. Brown)

Mode of Transmission: Circulative, propagative

Pathway - entry via mouthparts, food canal, gut, blood, salivary glands/oral region

Virulence Factors

(some expressed in cell, some excreted, some membrane bound) adherence/attachment (gut lumen) biofilm formation formation/colonization (lumen) quorum sensing (gut lumen)

Immune response (psyllid) /immunosuppression/inhibition (Liberibacter)

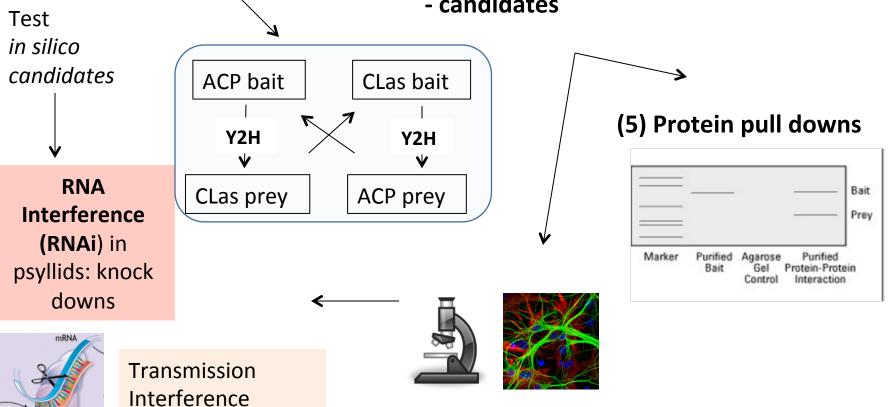
Multiplication/nutrition (Fe+2, Ca+, energy ATPase) invasion of epithelial lining /exit

Planktonic stage to establish new biofilms (external surface)/nutrition, multiplication or motile stage in blood to salivary glands / immune response/counter

Salivary gland invasion multiplication/nutrition?

Summary

Activated CDC42 kinase	1	Helicase domino		Transferrin		
ADAM 10 Adenylate cyclase type		Histone-lysine N-methyltransferase trr		GTP-binding protein 5		
		Isocitrate lyase		RING finger protein		
	Alpha-galactosidase AgaN			S-adenosylmethionine synthase	e	
Chaperone protein Dna				Scalloped		
Choline dehydrogenase		Mitochondrial import inner me	embrane translocase	Furin-like protease 2		
Choline transporter		NAD-dependent deacetylase s	irtuin-1	Galactose-1-phosphate uridylyltransferase		
Cleavage and polyaden	lation specificity factor	Poly-glutamine tract binding p	rotein 1	Glutamine synthetase 2 cytoplas	asmic	
E3 ubiquitin-protein liga	ase Su(dx)	Potassium voltage-gated chan	nel	GTP-binding protein 5		
Enolase		Protein split ends		SemiforinA		nmunity, Defense
Fatty acid synthase		RecA recombinase		LuxR		•••
Furin-like protease 2		Transferrin		HemH	-	oteasome
Galactose-1-phosphate	uridvlvltransferase	Aconitase		Ferroxidase	Caspase	
Glutamine synthetase 2		Acyl-COA		FabL		tor of cytokinesis protein
	of copidornic				Dynein	
						e proteinous factor
					Forkhea	ad box protein K2
					Hemoly	sin
					Hemocy	vtin
Adhesion, B	Car bohydrate binding FlgL	protein	Cand			n sulfate proteoglycan core pro n
ribosylation factor-like protein 2 pophorins protein rin fhesion molecule protein sulfate proteoglycan 4	Carbohydrate binding	protein	Effec Putative F in	ctors	Heparan Laminin MASK Nemo Notch pi Serine p Thyroid Transcri	n sulfate proteoglycan core pro n protein protease snake I hormone receptor interactor 1 ription factor grauzone genin receptor
ibosylation factor-like protein 2 pophorins protein rin thesion molecule	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-cont protein SC2-LasA1 SC2-prophage Tail	aining	Effec Putative F in Transmi	ctors Function	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog	n sulfate proteoglycan core pro n protein protease snake 1 hormone receptor interactor 1 ription factor grauzone genin receptor
ribosylation factor-like protein 2 pophorins protein rin fhesion molecule protein sulfate proteoglycan 4	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-cont protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen	aining	Effec Putative F in	ctors Function	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog	n sulfate proteoglycan core pro n protein protease snake 1 hormone receptor interactor 1 ription factor grauzone genin receptor
ribosylation factor-like protein 2 pophorins , protein rin thesion molecule lroitin sulfate proteoglycan 4 in	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-cont protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB	aining	Effec Putative F in Transmi	ctors Function	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog	n sulfate proteoglycan core pro n protein protease snake I hormone receptor interactor 1 ription factor grauzone genin receptor
ribosylation factor-like protein 2 pophorins , protein rin thesion molecule lroitin sulfate proteoglycan 4 in lucanase	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-conte protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19	protein aining t protein	Effec Putative F in Transmi	ctors Function	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog	n sulfate proteoglycan core pro n protein protease snake 1 hormone receptor interactor 1 ription factor grauzone genin receptor
ribosylation factor-like protein 2 pophorins protein rin fhesion molecule lroitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-cont protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB	protein aining t protein	Effec Putative F in Transmi	ctors Function	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog	n sulfate proteoglycan core pro n protein protease snake I hormone receptor interactor 1 ription factor grauzone genin receptor
ibosylation factor-like protein 2 pophorins protein rin thesion molecule froitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain 1 1	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-conte protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Facto	protein aining t protein r A	Effec Putative F in Transmi	etors Function ission vay	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake I hormone receptor interactor 1 ription factor grauzone genin receptor
ibosylation factor-like protein 2 pophorins protein rin thesion molecule lroitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain 1 1 1 1 1 1 1 1 1 1 1 1	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathv	etors Function ission vay	Heparan Laminin MASK Nemo Notch p Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake 1 hormone receptor interactor 1 ription factor grauzone genin receptor
ribosylation factor-like protein 2 pophorins protein rin dhesion molecule droitin sulfate proteoglycan 4 in lucanase rnal growth factor-like domain 1 n clutamine tract binding protein 1 in	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathw	etors Function ission vay Invasion ubtilisin	Heparan Laminin MASK Nemo Notch py Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake l hormone receptor interactor I iption factor grauzone genin receptor nsin
ribosylation factor-like protein 2 pophorins protein rin dhesion molecule droitin sulfate proteoglycan 4 in lucanase rnal growth factor-like domain 1 cl utamine tract binding protein 1 in I transmembrane protein	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathv	etors Function ission vay	Heparan Laminin MASK Nemo Notch pr Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake l hormone receptor interactor I iption factor grauzone genin receptor nsin
ibosylation factor-like protein 2 pophorins protein rin thesion molecule froitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain 1 cl utamine tract binding protein 1 in I transmembrane protein lin	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathv	etors Function ission vay	Heparan Laminin MASK Nemo Notch pr Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake l hormone receptor interactor iption factor grauzone genin receptor nsin
ibosylation factor-like protein 2 pophorins protein rin thesion molecule roitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain 1 n lutamine tract binding protein 1 in I transmembrane protein in ectin attachment protein	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathv	etors Function ission vay	Heparan Laminin MASK Nemo Notch pr Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake l hormone receptor interactor iption factor grauzone genin receptor nsin
ribosylation factor-like protein 2 pophorins protein rin dhesion molecule droitin sulfate proteoglycan 4 in lucanase rnal growth factor-like domain 1 cl utamine tract binding protein 1 in I transmembrane protein	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathw Furin/st Actin re Carbox Carbox peptide	etors Function ission vay Unition ission vay Invasion Hemoly Sypetidase Sypetidase activation Sin B	Heparan Laminin MASK Nemo Notch py Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake d hormone receptor interactor : ription factor grauzone genin receptor nsin
ibosylation factor-like protein 2 pophorins protein rin thesion molecule roitin sulfate proteoglycan 4 in lucanase mal growth factor-like domain 1 lutamine tract binding protein 1 in I transmembrane protein in ectin attachment protein locyte binding protein 2-like	Carbohydrate binding FlgL Flp/Fap MetK Rare Lipoprotein A Flagellin domain-contr protein SC2-LasA1 SC2-prophage Tail Fibronectin attachmen OmpA/MotB Cmp19 Von Willebrand Factor Mvin	protein aining t protein r A	Effec Putative F in Transmi Pathv	etors Function ission vay Invasion ubtilisin elated protein 6 ypeptidase sin B	Heparan Laminin MASK Nemo Notch py Serine p Thyroid Transcri Vitellog B-Defen	n sulfate proteoglycan core pro n protein protease snake d hormone receptor interactor f iption factor grauzone genin receptor nsin

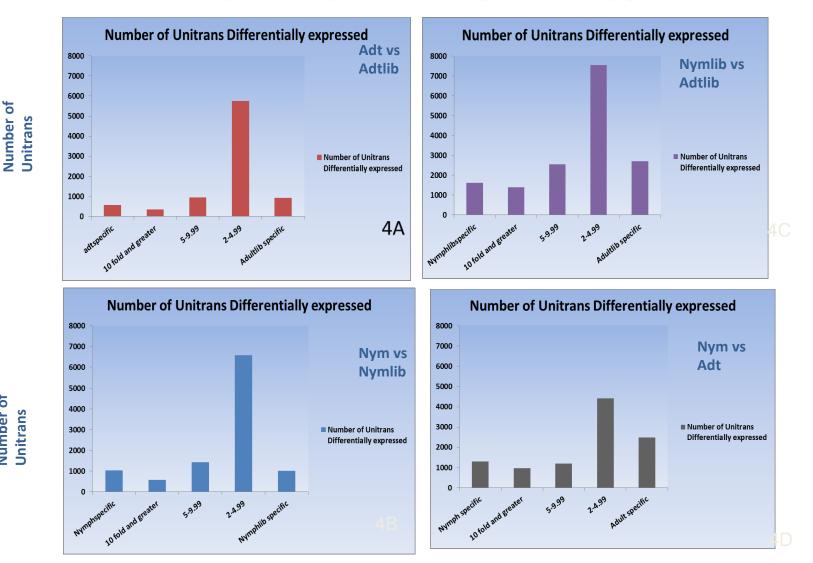

Bioinformatics

- 1. Literature searches
- 2. Psyllid transcriptomes
- 3. Databases (ex: NCBI)
- 4. Proteomics
- 5. Test for interactors

DECISION PIPELINE

(4) Yeast-2-hybrid interactions - candidates

Interference without mortality: bioassay


(6) In vivo detection of effectors, different FISH tags

(2) The Transcriptomes

			iptoi			ΡοΡ	ACP
		Sequencing (clean reads)	Wb			46,681,564	21,552,866
			WbL			53,240,863	46,865,913
			Ny			43,322,502	32,265,958
	Annotated sequences	\$	NyL			55,836,522	28,947,167
(NCBI-Inv): 23,646 (51%	%)	Total			199,081,451	129,631,904
Top hit: <i>D. citri</i>		Assembly	Total transcr Average exp (RPKM)	ipts ression of transcript	ts	82,224 65	45,976 149
			Mean length	(range) (bp)		651 (100- 27,405)	1,107 (150- 26,540)
			% GC (range			40.7 (15.6- 82.4)	40.4 (10 4- 77.9)
	~	Annotation		ted transcripts (%)		16,496 (20%)	17,958 (39%)
	Acyrthosiphon pisum		Average exp (RPKM)	ression of transcript	ts	133	142
	Tribolium castaneum		(RPRM) Mean length	(range) (hp)	1	754 (100- 27,405)	142 1,980 (150- 26,540)
	Pediculus humanus subsp.		% GC (range		-,-	45.3 (18.7-75)	44.0 (12.3- 77.9)
	Drosophila melanogaster	1	E-value (rang	•	2.5	(<i>, ,</i>	7.52E-13 (0- 1.0E-13)
S	Acromyrmex echinatior		-			·	
Species	Harpegnathos saltator						
Spe	Camponotus floridanus					PoP	ACP
	·			Sequencing	A 1	4045400	
	Apis mellifera	potato psyllid		(clean reads)	Gt	1345486	
	Aedes aegypti	Asian citrus pysllid			GtL	2392902	29 30395320
	Bombyx mori	· ······ ··· · · · · · · · · · · · · ·			0	2444027	
	other		· · · · · · · · · · · · · · · · · · ·		Sg	2414837	258 244366344
	0% F	10% 20% 3 Percentage of overall be	30% 40% est hits		SgL	2683124	90 252770353
					Total	5471801	43 572290348
	www.sohomopte	ra.org/ACPPoP			Total		
	(Fisher et al., 2014; Vy	as et al., <i>In Revi</i>	iew)	Assembly	transcript	s 110,937	7 83,231
	(,	Annotation	Annotated	d (%) 20,976 (1	9%) 26,511 (32%)

In silico predictions:

Asian citrus psyllid transcriptome: differential gene expression in infected/uninfected adult & nymph library comparisons; guts & salivary glands

Number of

Infected vs Uninfected: Similar 2-5 fold increase abundant; some 5fold; some >10 fold

Results: LC-ESI-MS/MS

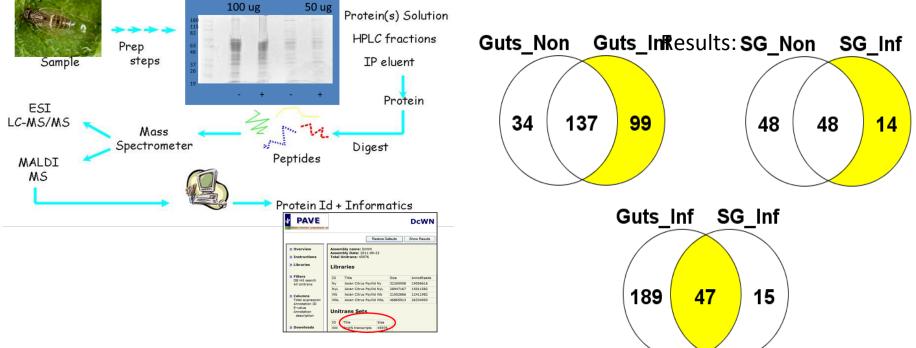
	V	Vhole psyll	id	Psyllid gut			Psyllid salivary gland		
	Total proteins	#Unique peptides	#Unique spectra	Total proteins	#Unique peptides	#Unique spectra	Total proteins	#Unique peptides	#Unique spectra
Uninfect	ed 220	2382	2843	166	1445	1689	88	654	787
CLso- infected	288	3038	3652	225	2653	2653	57	633	722

ex. Guts TCW transcriptomics – in silico

Biological Process GO levels 1-4 that contain significant number of DE transcripts

GO Num GO:0008152	Level 2	Description metabolic process	# Seq 15055	GtGtL 0.0032
GO:0044710	3	single-organism metabolic process	14655	0.0042
GO:0044706	3	multi-multicellular organism process	99	0.04
GO:0044419	3	interspecies interaction between organisms	680	0.0071
GO:0044237	3	cellular metabolic process	13457	0.011
GO:0009058	3	biosynthetic process	8170	0.00074
		symbiosis, encompassing mutualism through		
GO:0044403	4	parasitism	680	0.0071
GO:0006790	4	sulfur compound metabolic process	327	0.0057
GO:0044281	4	small molecule metabolic process	3887	3.80E-07
GO:0044711	4	single-organism biosynthetic process	1094	0.000086
GO:0009636	4	response to toxin	341	0.038
GO:0006979	4	response to oxidative stress	548	0.012
GO:0009612	4	response to mechanical stimulus	198	0.017
GO:0010035	4	response to inorganic substance	501	0.012
GO:0009629	4	response to gravity	66	0.028
GO:0072593	4	reactive oxygen species metabolic process	130	0.00049
GO:0015979	4	photosynthesis	72	0.0022
GO:0006793	4	phosphorus metabolic process	3332	0.043
GO:0055114	4	oxidation-reduction process	1015	0.00018
GO:0071704	4	organic substance metabolic process	14340	0.016
GO:0006091	4	generation of precursor metabolites and energy	729	0.024
GO:0071981	4	exit from diapause	53	0.015
GO:0017144	4	drug metabolic process	144	9.20E-10
GO:0051186	4	cofactor metabolic process	597	0.0013
GO:0044249	4	cellular biosynthetic process	7948	0.00066
GO:0016337	4	cell-cell adhesion	681	0.0069
GO:0071554	4	cell wall organization or biogenesis	82	0.000006

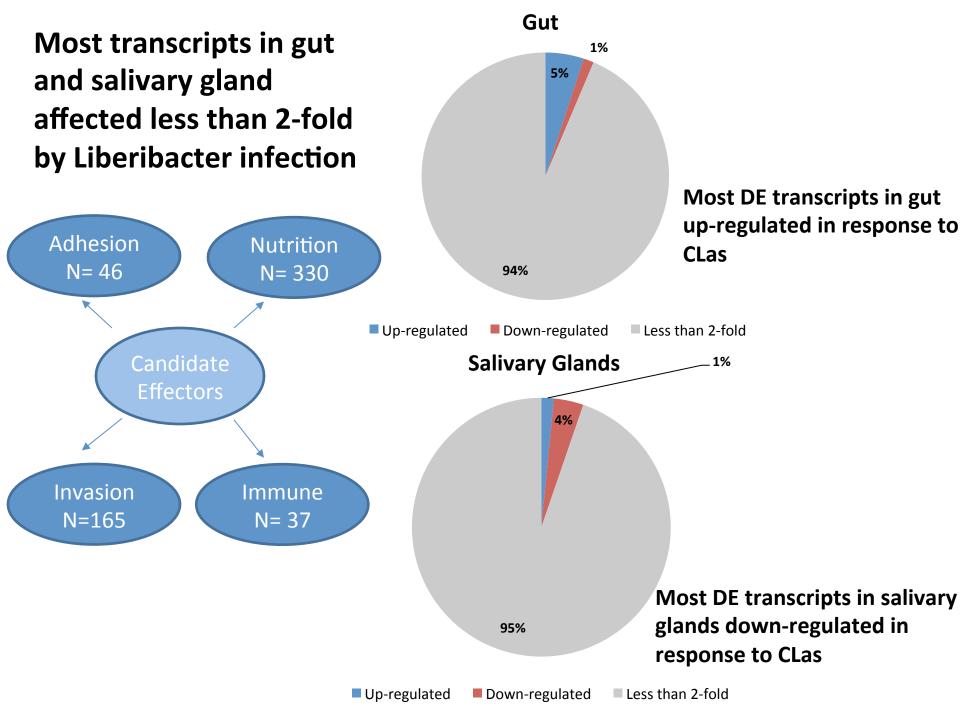
Invasion/Defense

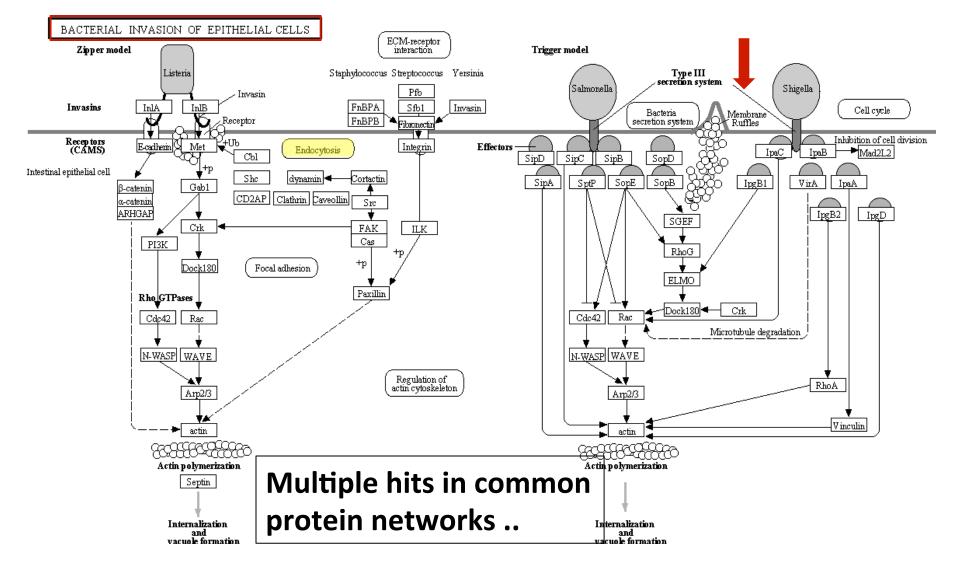

Adhesion/Biofilm

ex. SGs TCW transcriptomics

13 out of the 17 (76%) level 2 'Biological Process' GO categories contain a significant number of DE transcripts, compared to only 1 in gut comparisons

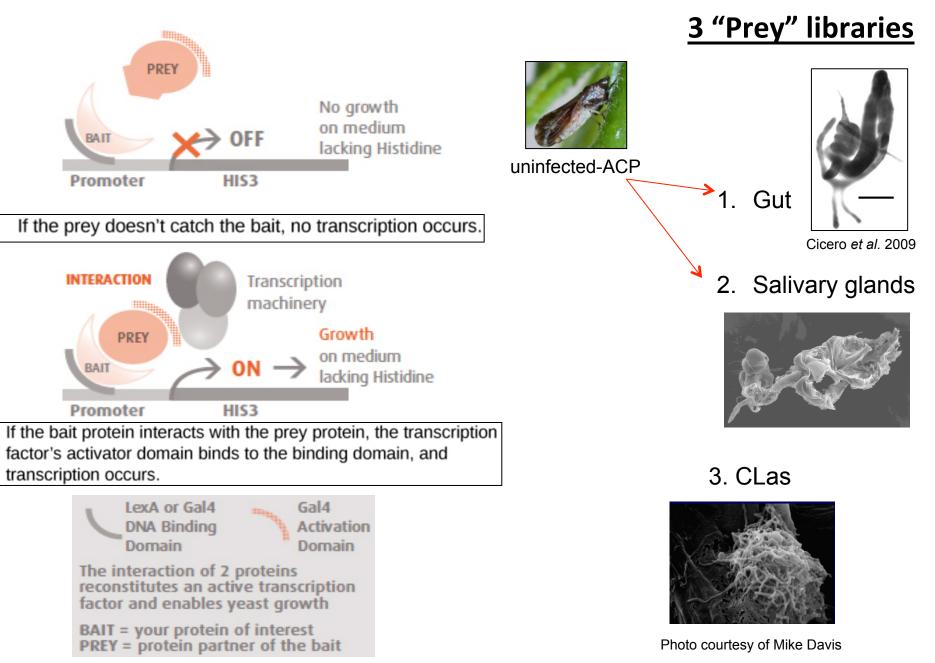
	Go Num	Level	Description	# Seq	SgSgL
	GO:0065007	2	biological regulation	11345	6.30E-24
	GO:0009987	2	cellular process	18843	0.00003
	GO:0016265	2	death	2023	0.019
	GO:0032502	2	developmental process	10916	3.40E-38
Nutrition	GO:0040007	2	growth	3602	0.013
Immune/Defense	GO:0002376	2	immune system process	1374	1.70E-03
Invasion	GO:0051179	2	localization	7536	2.10E-26
	GO:0051179 GO:0040011	2 2		7536 5016	2.10E-26 0.0013
			localization		
Invasion	GO:0040011	2	localization locomotion	5016	0.0013
Invasion	GO:0040011 GO:0051704	2 2	Iocalization Iocomotion multi-organism process	5016 9034	0.0013 2.40E-21
Invasion	GO:0040011 GO:0051704 GO:0032501	2 2 2	localization locomotion multi-organism process multicellular organismal process	5016 9034 11227	0.0013 2.40E-21 2.00E-33


(3) Proteomics = protein ID



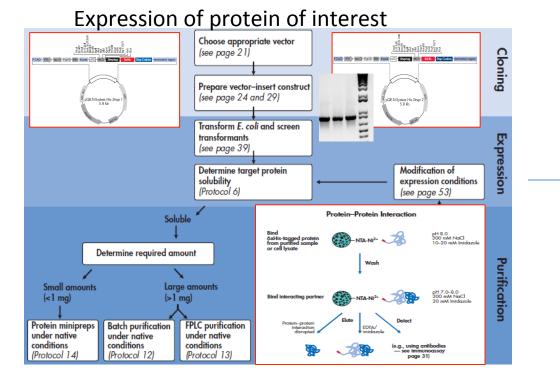
The majority of proteins found to be present in both the infected guts and salivary glands have putative functions associated with invasion of host tissues.

Results corroborated by *in silico* (TCW) comparative transcriptomics.


Collectively, these **two lines of evidence** are guiding the selection of potentially important effectors for systematic assessment in the decision pipeline.

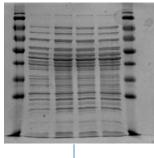
- Endo-exocyotic pathways, including phagocytosis, are known to be hijacked by pathogens to enable invasion of host tissues.
- Transcripts involved in these pathways are present in the transcriptome, and many are significantly expressed.

(4) Yeast two hybrid system


Most Promising Results from CLas "Bait" mated against ACP "Prey" Libraries

Mating No.	Bait (against ACP libraries)	Biologically Relevant Prey
1	Adhesion	2-Adhesion
2	Adhesion	1-Transport
3	Adhesion	1-Defense
4	Adhesion	1-Adhesion, 1-Defense, 2-Invasion , 1-Transport (Endocytosis)
6	Adhesion	1-Adhesion, 1-Defense, 1-Nutrition
7	Adhesion	1-Invasion
8	Invasion	1-Adhesion, 1-Nutrition
9	Invasion	1-Adhesion, 1-Invasion (Endocytosis)
10	Adhesion (Biofilm)	1-Defense, 1-Invasion
11	Adhesion	1-Invasion
12	Adhesion	1-Invasion
16	Invasion	1-Nutrition
17	Invasion	1-Invasion (Endocytosis)
18	Invasion	1-Invasion (Endocytosis)
19	Invasion	1-Invasion (Endocytosis)
20	Invasion	1-Invasion (Endocytosis)
21	Invasion	1-Invasion (Endocytosis)
22	Invasion	1-Invasion (Endocytosis)
23	Invasion	1-Invasion (Endocytosis)
24	Invasion	2-Adhesion, 1-Defense, 1-Invasion

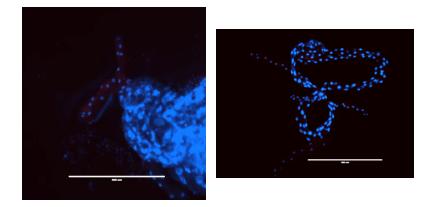
Most Promising Results from ACP "Bait" mated against CLas"Prey" Libraries


Mating No.	Bait (against CLas library)	Biologically Relevant Prey
8	Adhesion	1-Adhesion (Biofilm), 1-Defense
9	Defense	1-Adhesion, 1-Defense, 1-Nutrition
11	Invasion (Endocytosis)	2-Adhesion, 1-Defense, 2-Invasion
15	Adhesion	1-Defense
17	Adhesion	1-Invasion
19	Adhesion	1-Defense
20	Invasion	1-Invasion
25	Invasion (Endocytosis)	1-Virulence

Protein expression and Co-Immunoprecipitation

Crude psyllid extract

- Twenty-five whole psyllids will be added to 200 microliters of precooled buffer (*Strep*-tag[®]) with PIC.
- After sonication on ice, the homogenate is centrifuged for 20 min on max speed at 4°C.
 - Supernatant contains soluble protein fractions and is mixed with protein of interest.



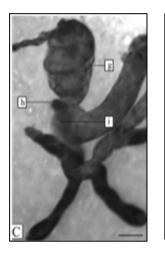
Identification of interacting components LC/MS

Localization microscopy

Goal: Visualize gene expression patterns of effectors under normal conditions and after mRNA knockdown by RNAi

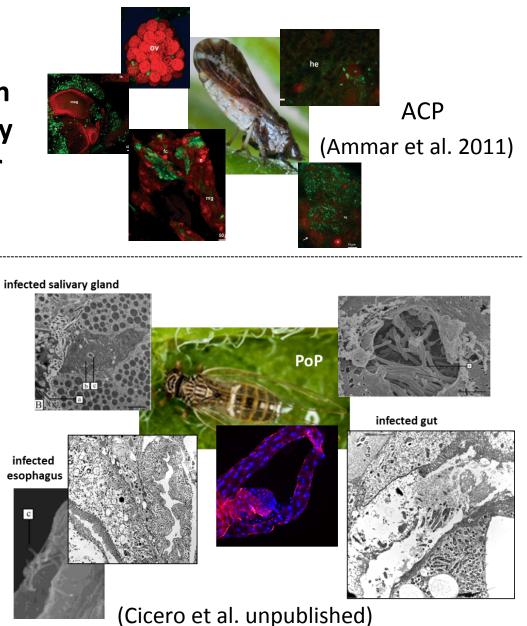
Results: Confirmed Carnoy's fixative and Cy5 fluorophore gives best results (no autofluorescence of non-infected tissues)

Antibody (Abcam)

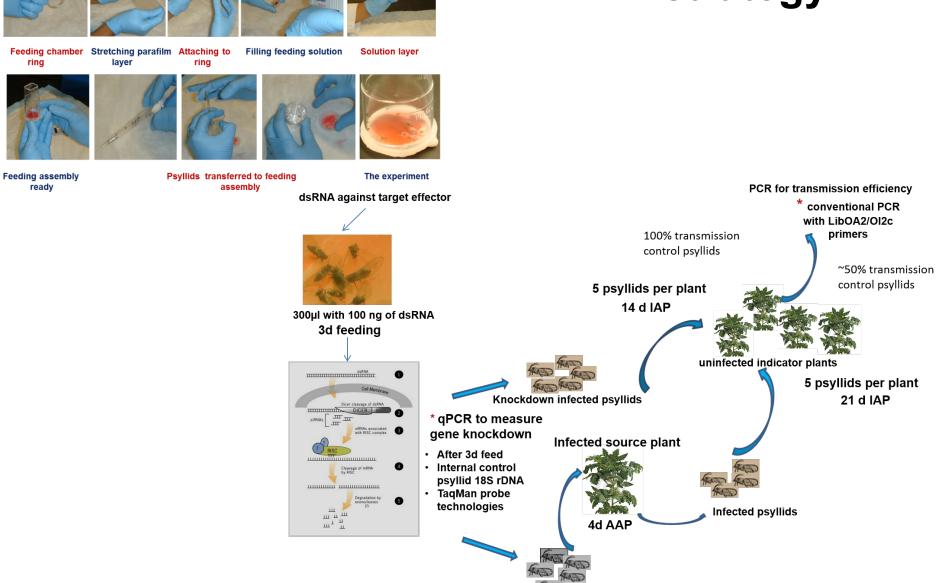

*Anti-OMP antibody ab93127

*Designed for CLas, poor results may indicate nonspecificity to CLso Oligonucleotide probe (Invitrogen)

CLso-specific 16rRNA


RNAi system

✓ Alimentary canal and
 Liberibacter localization through
 circulative transmission pathway
 of ACP and PoP are very similar



PoP ACP (Cicero et al. 2009)

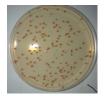
Feeding assembly for oral-delivery of dsRNA

Knockdown uninfected psyllids

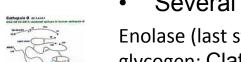
RNAi results for uninfected psyllid for transmission bioassays

62% of genes tested (5 out of 8) reduced transmission in 'newly infected' (4d AAP) psyllids.

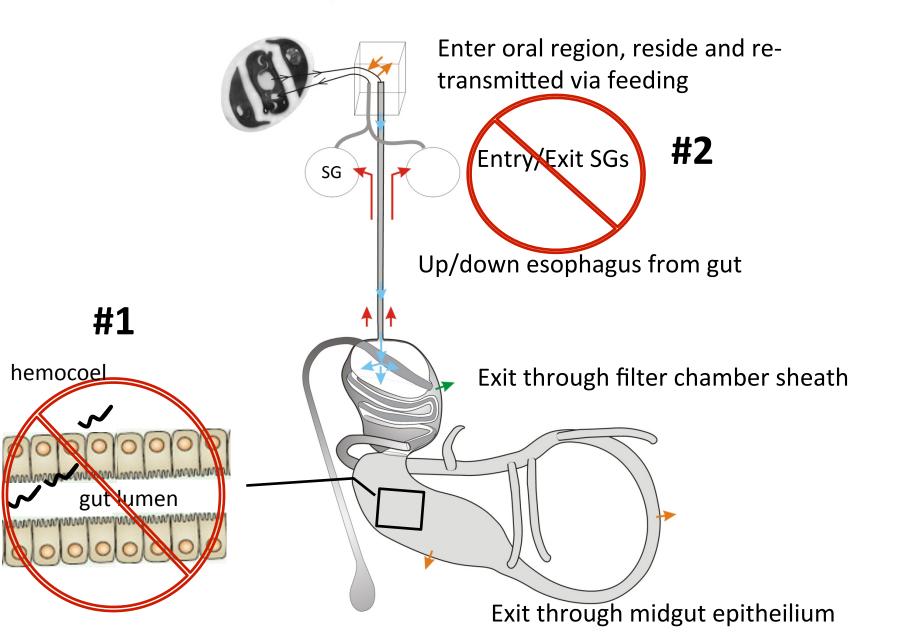
RNAi results for Clasinfected psyllid for transmission bioassays 25% of genes tested (3 out of 12) reduced transmission in psyllids born and reared on infected plants.


Summary

Transcriptomics- More than 80,000 transcripts of which 32% (26,511) are annotated. Many showing significant differential expression in response to CLas. All assembled into a user-friendly platform to identify life stage- and tissue-specific candidate effectors important in Clas-ACP.


 Proteomics- More than psyllid 300 proteins identified using ACP transcripts. Proteins were isolated from whole body adults, midguts and salivary glands allowing for the identification of candidate effectors based on variation in abundance in response to CLas infection as well tissuespecificity.

• Yeast 2 Hybrid system: the' interactions' of 22 genes (14 CLas genes) (8 ACP genes) reveal a model of pathogen invasion know in other bacterial pathosystems.


 RNAi/Transmission Bioassay: 17 interactors (genes/proteins) have beer tested: transmission abatement ranges from 18-55%.

Several are very promising as transgenic psyllid candidates:

Enolase (last step in glycolysis: 2-Phosphoglycerate to phosphoenolpyruvate) – muscles/ glycogen; Clathrin (coated vesicles/within cell transport); membrane ruffling effectors

Endocytosis: One target, Two Hits?

Acknowledgements

UA Brown Lab: Dr. Tonja Fisher, Tim Rast, M. Vyas UA: Dr. Carol Soderlund & Dr. William Nelson (TCW db) UA proteomics: Linda Breci

Support for aspects of this research was/is provided by

USDA-NIFA Nu-Psyllid CAPS project

Citrus Research and Development Foundation, Inc.

4/22/2015

Questions for consideration: The known unknowns and unknown unknowns of rearing, releasing and monitoring nuPsyllid v2

1. Will nuPsyllid rearing efforts be piggybacked on *Tamarixia* rearing programs?

Is the state-of-the art sufficient for producing WT ACP? How nimble are we with respect to adapting rearing technology to a nuPsyllid with a certain level of fitness costs due to effector or driver mechanisms? (*At least for initial field trials*)

- 2. Will nuPsyllid field testing be conducted in Florida, Texas, and California?
- 3. Will nuPysllids for field testing be reared in-state or will there be a single dedicated rearing facility to provide nuPsyllids nationwide?
- 4. Which facilities in Florida, Texas, and California will rear nuPsyllid?

5. Can we ascertain whether there will be fitness cost(s) to nuPsyllids in terms of rearing them?

Can mass rearing of nuPsyllid be accomplished with current rearing techniques (i.e., plant-based) or will artificial diets be required to introduce the driver?

If artificial diet or some artificial diet phase is needed, how much research is needed to accomplish this?

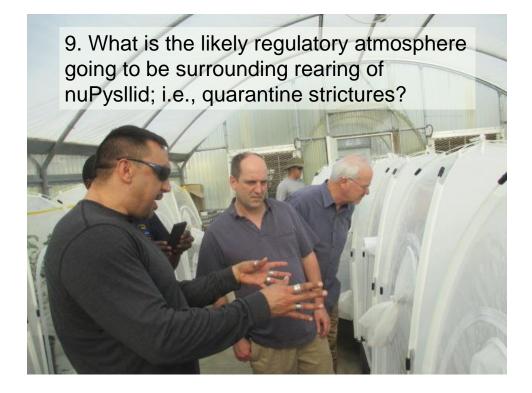
Is this feasible considering the state-of-art and existing facilities?

6. What does a nuPsyllid field test look like?

Type of planting array? 'All edge'? 'Blocks'? Size?

Designed for proof-of-concept success v. real world?

Conducted at a research farm or commercial site?


Is there a release model for us to follow? Oxitech?

Given possible regulatory concerns: Would tests need to be conducted in 'Amarillo, Reno, and New Jersey'?


7. Can we estimate how many nuPsyllids would be needed to run a single field test?

Need to achieve 50% replacement of WT With nuPsyllid.

-Introduce following insecticide treatment -Northern sites, introduce WT, then follow up with releases of nuPsyllid

Plant transformation in the laboratory: Embryos are extracted from seeds and maintained on prepared culture media (unflavored gelatin fortified with essential nutrients). A bacterium, Agrobacterium, is typically used to insert the target gene into the tender plant tissue. Marker genes for fluorescence or antibiotic activity are used to determine whether the gene was successfully inserted. Hundreds of transformation events are necessary to obtain only a handful of viable genetically modified seedlings.

Photo credit: Maria Oliveira, Ph.D., USDA-ARS

GENETIC ENGINEERING TO PROTECT CITRUS FROM HLB

Carrie Teiken, Peggy Lemaux, Beth Grafton-Cardwell and Neil McRoberts

This past summer, the Citrus Research Board (CRB) and University of California Cooperative Extension hosted citrus grower seminars in Exeter, Riverside and Santa Paula, California. A range of topics was covered – including export challenges due to plant disease, strategies for dealing with water shortages, labor issues facing the California citrus industry, and the potential for using genetically engineered organisms to control the deadly citrus disease, huanglongbing (HLB).

A cure for HLB has not been identified, and all citrus varieties are susceptible to the disease. This is an issue of extreme importance for California citrus growers. Although to date only one HLB-infected tree has been identified in California, the Asian citrus psyllid (ACP), the insect that vectors the bacteria causing HLB, has spread throughout Southern California, is working its way up the coast and has been found in small numbers in the San Joaquin Valley, where 75 percent of commercial citrus is grown.

An important way to stop the spread of HLB is to stop the ACP; however, that is easier said than done. Natural enemies, such as parasites and predators, can reduce psyllid populations, but they do not eliminate the entire pest population; and so the disease continues to spread. Continuous broad-spectrum insecticide treatments can reduce psyllids to very low levels. However, even these treatments do not completely eliminate psyllids, and they are not economically and environmentally sustainable. Lastly, there are limited choices and problems with efficacy of insecticides for organic growers. Long-term solutions are needed, and these may include engineering a citrus tree that can withstand the pathogen and/or a psyllid that cannot transmit the disease. The industry is now faced with the decision as to whether or not an engineering solution should be employed to save California citrus.

ADDRESSING GE SOLUTIONS

Peggy Lemaux, Ph.D., spoke at the Santa Paula and Exeter grower seminars and addressed the topic of engineering citrus or ACP during her presentation, "Food fights in the marketplace: is there a path forward for citrus to address HLB disease." Genetically engineered (GE) crops (also called GMOs or genetically modified organisms) are already being grown commercially in the U.S. with crops like alfalfa, canola, corn, cotton, soybean, papaya and sugar beet; and GE acreages for most of these are above 90 percent.

Although widely grown, GE crops have not been widely accepted in California, leading to county-based bans on growth and propagation of such crops. In California and other states, there have been efforts to pass laws that would require labels on foods containing an engineered ingredient. Using the term "genetic modification" to describe these newly-engineered crops adds to the confusion, because classical breeding (which has long been used to alter the genetic information in crop varieties) also results in modification of the genetic material of the plant. GE crops are modified using some of the same mechanisms used during breeding to change traits of a crop, but the modifications are performed in the laboratory and then reintroduced into the plant.

Currently, genetic engineering for HLB resistance is focused on a number of approaches: GE citrus trees that are resistant to the bacterium, GE citrus trees that kill ACP when it feeds on the tree, and GE ACPs that are unable to vector the bacterium, *'Candidatus* liberibacter asiaticus' (CLas), that is closely associated with HLB. These technologies not only have the potential to save the citrus industry, but also will help growers reduce the number of pesticide applications used to control ACP, thereby reducing costs and increasing profits. Cutting back on insecticides will help growers maintain an integrated pest management program for all citrus pests and reduce pesticide resistance, secondary pest outbreaks and risks to the environment and workers. However, GE organisms are often met with grower and general public apprehension. Concerns range from export issues (because some countries don't accept engineered crops), impacts on non-target organisms, movement of engineered genes to unintended crops and allergenicity caused by introduced genes. Yet, GE approaches will quite possibly be a component of the long-term solution for the HLB crisis.

CREATING A "nuPsyllid"

The federally-funded USDA National Institute of Food and Agriculture-Cooperative Agriculture Pest Survey's "nuPsyllid" project is a multiple research laboratory effort to engineer ACP and create a "nuPsyllid" that would replace the wild type ACP with a population that cannot transmit the HLBassociated bacterium HLB. The "nuPsyllid" non-vector then would be released into the ACP population, much like the release of *Tamarixia*, the parasitic wasp, and eliminate the wild ACP population.

Three methods currently are being studied to potentially modify the ACP. Bryce Falk, Ph.D., at the University of California Davis, is identifying naturally occurring ACP viruses. He then plans to genetically modify one of the psyllid viruses so that it will disrupt an essential function of the ACP, causing the psyllid to die or be unable to transmit CLas. Kirsten Pelz-Stelinski, Ph.D., at the University of Florida, is studying strains of *Wolbachia*, a bacterium that occurs naturally inside the body of many different types of insects. She plans to infect ACP with natural, foreign or altered *Wolbachia* to reduce the ACP's ability to transmit the bacteria. The third ACP modification is being investigated by Bruce Hay, Ph.D., at CalTech. Hay is working on creating a modified ACP that has a genetic element containing a toxin that kills the HLBassociated bacteria.

Several members working on the "nuPsyllid" project, including Neil McRoberts, Ph.D., University of California Davis Assistant Professor of Plant Pathology; Elizabeth Grafton-Cardwell, Ph.D., Director of the Lindcove Research and Extension Center and University of California Riverside IPM Specialist; and Carrie Teiken, University of California Davis Plant Pathology graduate student, are involved with investigating the socio-ecological consequences of engineering ACP. If a "nuPsyllid" engineering approach is successful, there likely will be reluctance to accept the altered psyllid, within both urban and grower communities, due to a variety of concerns. These concerns include the movement of introduced genes to other insects, consumer acceptance of oranges exposed to "nuPsyllid," potential damage to the crop by released psyllids and regulatory issues for organic citrus production. Therefore, the "nuPsyllid" Socio-economics and Modeling Team is evaluating how to effectively disseminate information on genetic engineering approaches to the citrus industry and provide them with an understanding of the potential long-term benefits and risks of the project.

SURVEYING THE INDUSTRY

The team began this evaluation task by individually surveying growers, pest control advisors and others who attended the March 2014 Citrus Showcase in Visalia, California, hosted by California Citrus Mutual with special presentations by the CRB. Attendees at the citrus grower seminars in Exeter and Santa Paula were given a similar survey, but were able to answer the questions with clickers' (handheld electronic transmitters). The clicker survey posed multiple-choice questions projected on a screen. Each participant then submitted their answers using the clicker, beaming a signal to the presentation computer, which collected the participants' answers and produced a chart that showed immediately how many participants chose each answer. The results of the survey were anonymous. A total of 259 responses were recorded: 46 at the Visalia Citrus Showcase, 42 in Santa Paula and 171 in Exeter.

Survey questions included information on citrus acreage grown or managed, age of participant, and their opinion on using genetic engineering to prevent HLB from spreading in California citrus. The survey also asked which type of engineering approach growers preferred: GE citrus trees that resist the disease, GE trees that kill the ACP when they feed, released GE ACPs that don't spread HLB, or none of the above. The last question asked growers to select what they believe is the biggest impediment to using GE approaches to manage ACP and HLB. Choices included grower acceptance, public acceptance, government approval or "I don't know."

KEY SURVEY FINDINGS:

• What size are citrus farms? The majority who were surveyed at the Visalia Showcase (63 percent) and the Santa Paula meeting (76 percent) farmed less than 100 acres of citrus. In Exeter, there were similar proportions of growers with less than 100 acres (39 percent) and those with more than 500 acres (37 percent). The remainder (24 percent) farmed between 100–500 acres (Figure 1).

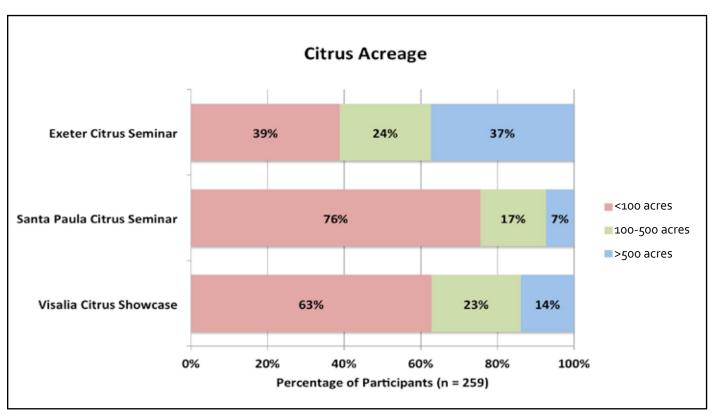


Figure 1: Number of acres of citrus grown.

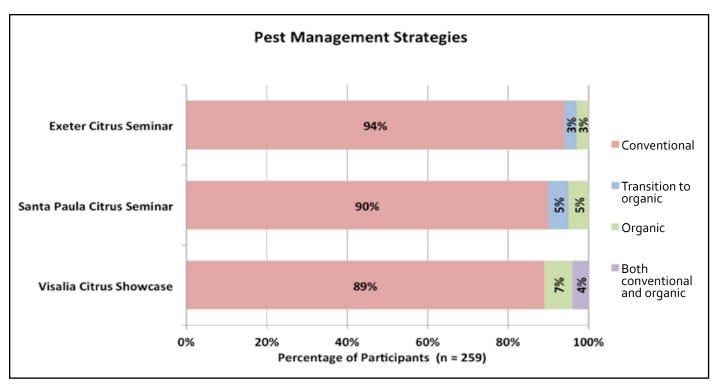


Figure 2: Proportion of growers practicing conventional, transitional and organic pest management strategies.

• What types of citrus growers? In all three locations, 89-94 percent of growers utilized a conventional pest management strategy of synthetic insecticides and herbicides; the remainder were organic growers or growers transitioning to organic (Figure 2).

• **Thoughts on engineering?** Most of the survey participants were either strongly (65 percent) or cautiously (25 percent) in favor of a GE approach for controlling HLB. A low percentage (six percent) were indifferent or were completely against (six percent) GE approaches (Figure 3).

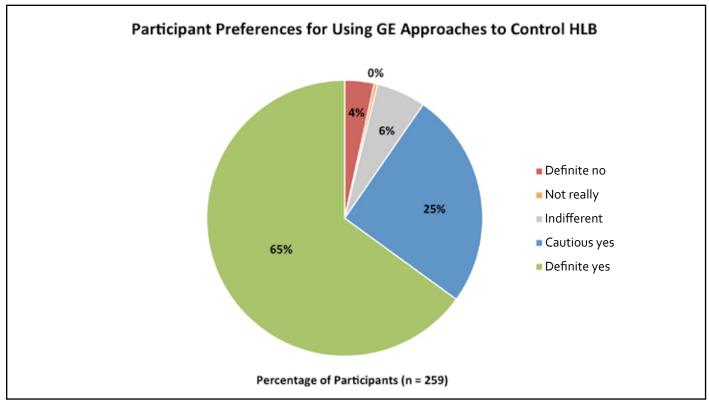


Figure 3: Participant preferences for using GE technology to prevent HLB from spreading in California.

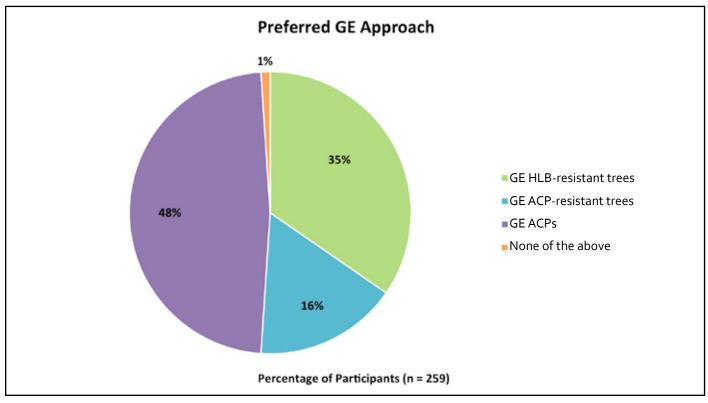
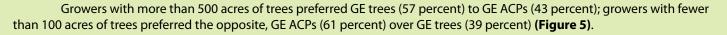



Figure 4: Preferred GE approach to control HLB.

• What engineering approach? Participants were evenly split between GE ACPs (48 percent) and GE trees (51 percent) as preferable for controlling HLB (Figure 4).

Between the two techniques for GE trees, HLB-resistant trees were preferred (35 percent) over ACP-resistant trees (16 percent) (Figure 4).

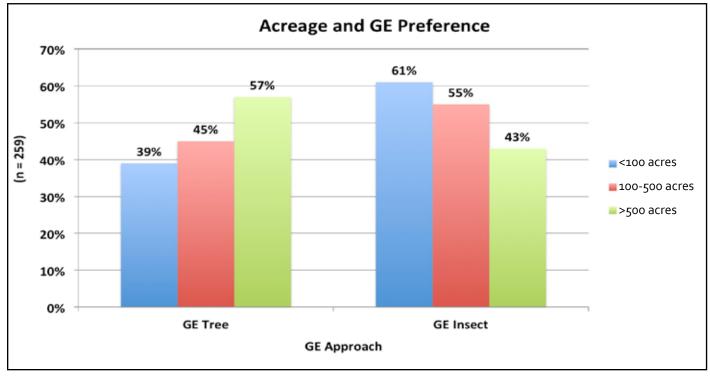


Figure 5: Grower acreage and preferred GE approach to control HLB.

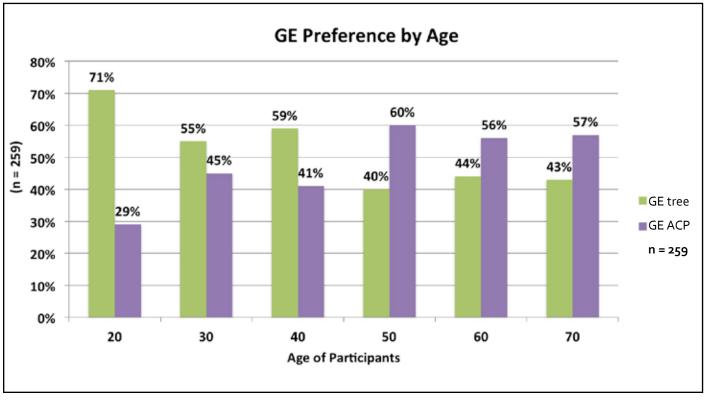


Figure 6: Age of survey participants and preferred GE approach to control HLB.

Participants aged 40 and younger had a stronger preference for GE trees (62 percent), while those over 50 preferred GE ACPs (58 percent) to control HLB (Figure 6).

• What would the impediment be? Most attendees believed that public acceptance (56 percent) would be the biggest impediment to adoption of genetic engineering of either the tree or the psyllid, followed by government approval (33 percent). A small percentage thought grower acceptance would be an impediment (six percent), and some did not know (five percent) (Figure 7).

Figure 7: Participant opinions on the impediments to adoption of GE approaches to control HLB.

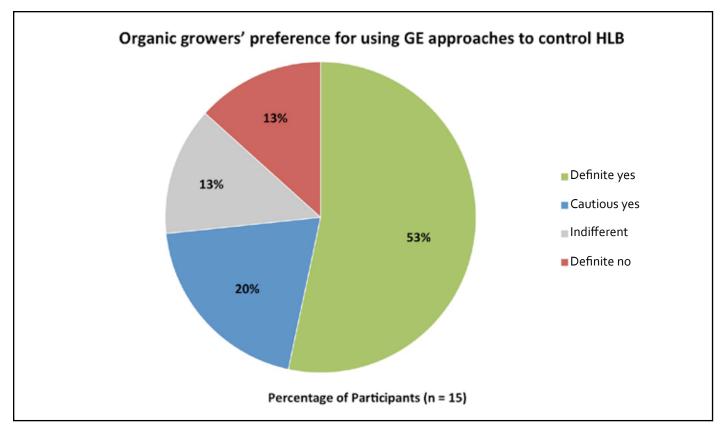


Figure 8: Organic growers' preferences for using GE technology to prevent HLB from spreading in California.

• What did organic/transitional growers think? While there were only 15 organic/transitional growers who participated in the survey, the majority either definitely or cautiously supported GE approaches to control HLB (73.3 percent). A small number completely rejected GE (13.3 percent), while some were indifferent (13.3 percent) (Figure 8). Those who supported GE were split between GE trees (54 percent) and GE ACPs (46 percent).

Overall, the majority of those surveyed are in support of GE approaches to control HLB. Interestingly, preference for the GE approaches varied strongly based on age and acreage. When the Exeter audience was questioned about why they chose one GE approach over another, the older participants pointed out that they don't have time to replant citrus and reap the benefits of full production; and they, therefore, preferred modification of the psyllid. The younger participants felt that a GE tree would be a more permanent solution. Small growers preferred a transformed ACP solution, because replanting would have a negative impact on their income.

Although only 16 organic/transitional growers participated in the survey, the results showed most were in favor of using GE approaches to control HLB. One GE supporter at the Visalia meeting asked if GE would hinder one's status as an organic grower. We cannot answer that question at this point, because GE insects have not been released for agricultural purposes in the United States, and the regulatory process and consequences for the organic industry have not yet been determined.

IDENTIFYING POTENTIAL ISSUES

Many participants recognized that there are potential issues associated with GE technology that will need to be addressed. The majority felt that public acceptance would be the most difficult hurdle, followed by government approval. Only a few participants thought that growers would not support GE approaches, which was strongly substantiated by the grower survey responses. Several participants who completed the survey in Visalia also mentioned concerns about the safety of GE citrus for human consumption and its impact on the price of fruit. In Exeter, one participant was concerned that there would be fewer citrus varieties, and that the industry could lose some of the tastiest varieties since it takes time to engineer each variety and obtain regulatory approval to release into commercial production. Another expressed concern about having a monoculture of GE trees and the potential for the whole system to "crash and burn."

All GE technologies are under development at this time: transforming the plant itself to kill the bacterium or psyllid;

introducing a virus into the plant that carries an anti-bacterial gene; altering the psyllid itself so that it cannot transmit the bacteria; or introducing an organism into the psyllid to block its activity as a vector. If one or more of the GE approaches being researched is successful, one of the greatest challenges for the citrus industry will be to address the general public and regulatory concerns surrounding the technology. In all probability, both modified ACP and modified trees will be introduced along with other management tactics for a systems approach to addressing the devastating effects of HLB.

We are at the beginning of thinking about how to best deploy such technologies, and this is an on-going conversation in which the views of the industry are a crucial part. The recently announced investment in research to combat HLB by the federal government is likely to accelerate the pace at which new technologies are developed. The University of California extension and outreach team will be working hard to help with the education and implementation processes and we strongly encourage the active involvement of the grower community. Carrie Teiken is a graduate student in the Department of Plant Pathology at the University of California Davis; Peggy Lemaux, Ph.D. is a cooperative extension specialist in plant and microbial biology at the University of California Berkeley; Beth Grafton-Cardwell, Ph.D. is the director of the Lindcove Research and Extension Center and a University of California Riverside integrated pest management specialist; and Neil McRoberts, Ph.D., is an assistant professor of plant pathology at the University of California Davis.

