The Role of Bactericides in Huanglongbing Management

Stephanie Slinski, IRCHLB 3/15/2017
CRDF Bactericide program

• What are the goals of this program?
• How do we try to achieve these goals?

Less of this

More of this
How to Help Citrus Growers

What the growers need *now*
- Keep trees in production
- Slow the decline of infected trees
- Improve fruit quality
- Protect replants
- How?

Soon?
Resistance
Tolerance
CRDF Bactericide Program

Goal – get effective bactericides to growers

• First step - identification of potential bactericides
 • R & D Libraries
 • Agricultural Chemical Companies
 • Pharmaceutical Companies
 • Other Industries
 • Researchers
 • Agricultural Chemicals (Labeled for other crops)
CRDF Bactericide Discovery

• What have we been looking at?
 • More than 1000 chemicals tested *in vitro*
 • Antibiotics
 • Nanomaterials
 • New molecular entities
 • Minimum risk
 • Biopesticides
 • Agricultural chemicals

• How to prioritize?
Bactericide Discovery

- Average development of a new active is 11.3 years

Panel of studies:
- Ecological Risk Assessment
- Human Health Risk Assessment

Required residue trials for Citrus Subgroup:
- 12 trials in Region 3 (FL)
- 2 in Region 6 (TX)
- 9 in Region 10 (CA)

Bactericide Discovery

2010-14

Registration 11.7%
Chemistry 17.1%
Total research 37.3%
Biology 17.8%
Tox/Environmental Chemistry 2.4%
Development Chemistry 12.3%
Field trials 16.5%
Toxicology 10.0%
Environmental Chemistry 51.0%
Total development 51.0%

Total =$286 m.

Bactericide Discovery

• First step in the bactericide discovery process
 • What works in the petri plate?
 • More than 1000 chemicals tested
 • Antibiotics
 • Nanomaterials
 • New molecular entities
 • Minimum risk
 • Biopesticides
 • Agricultural chemicals

• Near-term therapies needed
• Next-generation bactericides are also important

Citrus Research & Development Foundation
Some bactericides are easier to register

- **Biopesticide**
 - Derived from natural materials such as animals, plants, bacteria, and certain minerals.
 - Considered reduced risk pesticides
 - May require a significantly reduced data set compared to conventional registrations.
 - Registration time and fees
 - Biopesticide = 19 months and $48,621
 - Conventional Pesticide = 24 months and over $590,000

Minimum-Risk

- Exempt from registration under FIFRA section 25(b)
- Exempt Ingredients, both active and inert, are demonstrably safe for the intended use
Bactericide Discovery

• Labeled pesticides are a good solution
 • Time-to-market ~ 3 years
• Streptomycin and OTC

~ 1 year plus 24 month PRIA timeline (EPA)

Required residue trials for Citrus Subgroup:
• 12 trials in Region 3 (FL)
• 2 in Region 6 (TX)
• 9 in Region 10 (CA)

Bactericide Evaluations

- How do we test materials
 - Assay system

- Several field trials are in place to test bactericides
Bactericide Evaluation

Biopesticide Trial

• All botanical oil products
 • Thyme Guard (Agro Research International)
 • Ecotrol Plus (Keyplex)
 • Onguard EO (AgXplore)
 • Xplode (AgXplore)
 • Research EO

• Company application recommendations/adjuvants (foliar)
• Applications every 60 days
Bactericide Evaluation

Biopesticide Trial
• Two nearby blocks
 • One with no HLB detected
 • One 100% HLB detection

• After one year: no significant improvement in any treatment at either site

• Evaluations
 • Disease severity
 • Bacterial titer
 • Growth measurements
 • Leaf Nutrition
 • Canker
 • Fruit Drop
 • Yield
Bactericide Evaluations

Grower Bactericide Trials

• Non-RCB

• Evaluating grower bactericide programs
 • Any adjuvant, tank mix, timing etc.

• Evaluation methods
 • 20 trees in four blocks in control and treatment row
 • Disease Severity (3x/year)
 • PCR (3x/year)
 • Yield
 • Fruit Drop

<table>
<thead>
<tr>
<th>Variety</th>
<th>Number of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valencia</td>
<td>41</td>
</tr>
<tr>
<td>Hamlin</td>
<td>16</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>11</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
</tr>
</tbody>
</table>

• 20 sites harvested
Grower Bactericide Trials

Valencia

<table>
<thead>
<tr>
<th>Metric</th>
<th>Control</th>
<th>Treatment</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>18.80</td>
<td>18.90</td>
<td>0.6727</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>HLBDIMax40_May2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>14.90</td>
<td>13.70</td>
<td>0.0019</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.43</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>HLBDIMax40_Oct2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>14.40</td>
<td>13.80</td>
<td>0.1059</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.24</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>HLBDIMax40_Jan2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>19.5710 ± 2</td>
<td>28182.07 ± 4.41</td>
<td>0.1492</td>
</tr>
<tr>
<td>Std Error</td>
<td>4404.41 ± 2</td>
<td>4421.76 ± 4.41</td>
<td></td>
</tr>
<tr>
<td>CopyNumberPer100ngDNA_May2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2254.08 ± 4.14</td>
<td>1214.87 ± 20.39</td>
<td>0.0488</td>
</tr>
<tr>
<td>Std Error</td>
<td>441.41 ± 4.14</td>
<td>203.99 ± 20.39</td>
<td></td>
</tr>
<tr>
<td>CopyNumberPer100ngDNA_Jan2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>17.52 ± 1.38</td>
<td>13.76 ± 1.04</td>
<td>0.0171</td>
</tr>
<tr>
<td>Std Error</td>
<td>1.38 ± 1.38</td>
<td>1.04 ± 1.04</td>
<td></td>
</tr>
<tr>
<td>YieldKg_Feb2017</td>
<td>20</td>
<td>20</td>
<td>0.0071</td>
</tr>
<tr>
<td>Mean</td>
<td>56.20 ± 2.95</td>
<td>65.77 ± 2.62</td>
<td></td>
</tr>
<tr>
<td>Std Error</td>
<td>2.95 ± 2.95</td>
<td>2.62 ± 2.62</td>
<td></td>
</tr>
</tbody>
</table>

Graphs

- **PG-1**
 - Control
 - Treatment

Citrus Research & Development Foundation
Grower Bactericide Trials

<table>
<thead>
<tr>
<th>Grapefruit</th>
<th>Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean</td>
<td>Std Error</td>
</tr>
<tr>
<td>HLBDI Max 40 April 2016</td>
<td>40</td>
<td>16.68</td>
</tr>
<tr>
<td>HLBDI Max 40 Sept 2016</td>
<td>40</td>
<td>9.85</td>
</tr>
<tr>
<td>HLBDI Max 40 Oct 2016</td>
<td>40</td>
<td>10.20</td>
</tr>
<tr>
<td>HLBDI Max 40 Nov 2016</td>
<td>40</td>
<td>11.80</td>
</tr>
<tr>
<td>HLBDI Max 40 Jan 2017</td>
<td>40</td>
<td>13.98</td>
</tr>
<tr>
<td>HLBDI Max 40 Jan 30 2017</td>
<td>40</td>
<td>16.73</td>
</tr>
<tr>
<td>Copy Number Per 100 ng DNA</td>
<td>40</td>
<td>195.04</td>
</tr>
<tr>
<td>April 2016</td>
<td></td>
<td>157.75</td>
</tr>
<tr>
<td>Copy Number Per 100 ng DNA</td>
<td>40</td>
<td>113.10</td>
</tr>
<tr>
<td>Jan 2017</td>
<td></td>
<td>40.27</td>
</tr>
<tr>
<td>Fruit Drop Percent Jan 2017</td>
<td>40</td>
<td>55.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>Yield Kg Jan 2017</td>
<td>40</td>
<td>30.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.79</td>
</tr>
</tbody>
</table>

[Graph of BG6-B showing control vs treatment with p values indicated]
Bactericide Delivery

• Are the bactericides effective, but delivery not?
 • Improved delivery may improve efficacy
 • Trunk injection has been evaluated in the past
 • Are new formulations more effective?
 • Less phytotoxic?
• Concerns
 • Multiple injections are not economical
• Residues
 • Modification of the pesticide label requires new residue study
Bactericide Delivery

- CRDF Field Trial - Trunk injection versus foliar application
 - 2 Injection events versus three foliar applications
 - Results - No significant improvement in health

- What next?
 - Change concentration?
 - Residue problem?
 - Change Volume?
 - Change Injection Technology
 - Are there other application technologies that will improve uptake?
 - More work to be done
Conclusions

• What is the role of bactericides in HLB management?
 • Effect bactericides may support the industry in the short-term
• Why do we still have so few bactericides?
 • New effective materials have a long timeline
 • Need significant financial support
 • Citrus is a minor crop
• Regulatory
 • Important cross-resistance concerns/human health
• Delivery
 • How do we deliver bactericides to the phloem?
Thank you

CRDF is proud to provide support to the Florida citrus industry