

NOTICE OF A MEETING OF THE CITRUS RESEARCH AND DEVELOPMENT FOUNDATION SELECT COMMITTEE ON PLANT IMPROVEMENT Wednesday, December 2, 2020 – 9:00 am EST

TIME AND PLACE OF MEETING

A TELECONFERENCE meeting of the Select Committee on Plant Improvement of the Citrus Research and Development Foundation, Inc. will be held on <u>Wednesday, December 2, 2020 at</u> <u>9:00 am EST</u>. This meeting is accessible via Zoom Video Conferencing. To join Zoom Meeting visit <u>https://ufl.zoom.us/j/96076167423</u> and enter the Meeting ID: 960 7616 7423 or by dialing 646-558-8656 and entering participant access code/Meeting ID 960 7616 7423 when prompted.

To avoid interruptions/distractions during the call, please be mindful of the following:

- When speaking, please say your name so that the minutes can be properly captured.
- Please mute your line whenever you are not speaking to prevent background noise from disrupting the meeting and ensure the best sound quality during the call.
- If you have any problems during your call, please text Audrey Nowicki at 412-554-5143 or Deidra Whatley at 863-412-1071, to try to help resolve the problem immediately.

Pursuant to the provisions of the Americans with Disabilities Act, any person requiring special accommodations to participate in this meeting is asked to advise the Foundation at least 72 hours in advance by contacting Deidra Whatley by phone at (863) 956-8817 or by email at <u>d.whatley@citrusrdf.org</u>.

CITRUS RESEARCH AND DEVELOPMENT FOUNDATION SELECT COMMITTEE ON PLANT IMPROVEMENT Wednesday, December 2, 2020 – 9:00 am EST

AGENDA

A. Call to Order

- B. Roll Call/Determination of Quorum
- C. Plant Breeder Goals for the Committee
- D. Review and discussion of rootstock recommendations from field trial template data summary
 - 1. UF-IFAS Recommended Rootstocks *
 - 2. USDA Recommended Rootstocks *
 - a. Rootstock ranking with narrative *
 - 3. Staff Recommendation *
- E. Review and discussion of evaluation criteria and phase definitions of the plant breeding

pipeline *

- F. Other Business
- G. Public Comments
- H. Adjournment

								Canopy	average	predicted		Average	Average boxes/tree
					Planting	Trees per	Number of	Volume	tree	optimum	PCR_Ct	Yield per	past 2
Rootstock	Scion	County	Trial name	Availability	Date	Replication	Replications	(M^3) *	diameter	trees/acre	*	Tree (Kg) *	seasons
Cleo+Carrizo	Vernia	Polk	St. Helena	seed/TC	Apr-08	4	2		8.6	256		73.48	1.8
Blue 1	Vernia	Polk	St. Helena	seed	Apr-08	4	2		10.5	209		91.85	2.25
Orange 1804	Vernia	Polk	St. Helena	seed Argentia	Apr-08	4	2		10.5	182	32	116.35	2.85
Aqua 1803	Vernia	Polk	St. Helena	seed Argentia	Apr-08	4	2		9.7	226	31.5	87.8	2.15
UFR-5	OLL-8	Osceola	Orie Lee	seed	Jun-13	2	1					89.8	2.2
Orange 14	OLL-8	Osceola	Orie Lee	seed	Jun-13	2	1					98	2.4
Orange 16	OLL-8	Osceola	Orie Lee	seed	Jun-13	2	1					72.5	1.8
UFR-1	OLL-8	Osceola	Orie Lee	seed	Jun-13	2	1					77.6	1.9
UFR-10	Marsh gft	Indian River	IR	ТС	Mar-07	6	3					102.1	2.5
UFR-9	Marsh gft	Indian River	IR	TC	Mar-07	6	3					89.8	2.2

UF-IFAS Gmitter-Grosser - nominated rootstocks (11-23-2020)

		Average Annual Yield per Plot	Yield per	Yield Efficiency Kg/Cubic	Annual Pound Solids per Acre average last 2	Projected Cumulative Pound Solids	Fruit Size	Annual	Annual	Annual	Annual Pound Solids per Box average of last
Rootstock	Scion	(Kg)*	Plot (Kg)	Meter *	seasons	Per Acre	(g) *	Brix*	Acid *	Ratio *	two seasons *
Cleo+Carrizo	Vernia	293.9			3115	21,214					6.8
Blue 1	Vernia	367.4			2,940	20,579					6.3
Orange 1804	Vernia	465.4			3,380	20,503					6.45
Aqua 1803	Vernia	351.1			3,191	19,863					6.5
UFR-5	OLL-8	179.6						12.2			6.9
Orange 14	OLL-8	196						11.3			6.3
Orange 16	OLL-8	145						11.9			6.8
UFR-1	OLL-8	155						12.3			6.85
UFR-10	Marsh gft	612.6									4.1
UFR-9	Marsh gft	539									4.1

		[
						_	
Rootstock	Scion	County	Trial name	Availability	Planting	Trees per	Number of Replications
	Hamlin	County		Availability no MTA - no seed	Date	Replication	•
US-1282 US-1282	-	St Lucie	USDA Picos 2000 USDA LaBelle 2016	no MTA - no seed	2000 2016	1	7
US-1282 US-1282	Valencia Valencia	Hendry St Lucie	Picos 2017 MAC	no MTA - no seed	2016	3	6
	Hamlin		USDA Picos 2000				-
US-1283		St Lucie		no MTA - seed available	2000	1	7
US-1283 US-1283	Hamlin	Lake	USDA Conserv 2002 Picos 2017 MAC	no MTA - seed available no MTA - seed available	2002 2017	2	6 7
	Valencia	St Lucie				-	
US-1516	Valencia	Polk	USDA Lake Wales 2008	no MTA - seed available	2008	3	7
US-1516	Hamlin	Lake	USDA WF 2015	no MTA - seed available	2015	1	8
US-1516	Valencia	St Lucie	USDA Picos 2016	no MTA - seed available	2016	1	12
US-1516	Valencia	St Lucie	USDA Picos 2017-5	no MTA - seed available	2017	1	12
US-SS3	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	10
US-SS3	Hamlin	Lake	USDA WF 2015		2015	1	8
US-SS3	Hamlin	Lake	USDA WF 2015b7		2015	1	8
US-2111	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	11
US-2111	Valencia	St Lucie	USDA Picos 2015	need MTA - no seed	2015	1	12
US-2111	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2015	1	8
US-2111	Valencia	Hendry	USDA LaBelle 2016	need MTA - no seed	2016	1	5
US-1688	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	11
US-1688	Valencia	Hendry	USDA LaBelle 2014 V	need MTA - no seed	2014	2	3
US-1281	Hamlin	St Lucie	USDA Picos 2000	no MTA - no seed	2000	1	7
US-1281	Hamlin	Lake	USDA Conserv 2006	no MTA - no seed	2006	1	
US-1281	Valencia	Hendry	USDA LaBelle 2016	no MTA - no seed	2016	1	5
US-1281	Valencia	St Lucie	Picos 2017 MAC	no MTA - seed available	2017	2	6
US-1279	Hamlin	St Lucie	USDA Picos 2000	no MTA - no seed	2000	1	7
US-1279	Hamlin	Lake	USDA Conserv 2006	no MTA - no seed	2006	1	
US-SS1	Hamlin	Lake	USDA WF 2011	no MTA - no seed	2011	1	5
US-SS1	Valencia	St Lucie	USDA Picos 2014		2014	1	9
US-2109	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	8
US-2109	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2015	1	8
US-2109	Hamlin	Lake	USDA WF 2015b7		2015	1	8
US-1694	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	10
US-1694	Valencia	Hendry	USDA LaBelle 2014 V	need MTA - no seed	2014	2	3
US-1694	Valencia	St Lucie	USDA Picos 2017	need MTA - no seed	2017	1	12
US-1284	Hamlin	St Lucie	USDA Picos 2000	no MTA - seed available	2000	1	7
US-SS2	Hamlin	Lake	USDA WF 2011	no MTA - no seed	2011	1	5
US-1649	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	10
US-1649	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2014	1	8
US-1649	Valencia	St Lucie	USDA Picos 2017	need MTA - no seed	2013	1	12
US-2338	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2017	1	8
US-2338	Valencia	Hendry	USDA LaBelle 2016	need MTA - no seed	2014	1	5
US-1672	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2010	1	10
US-1709	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1	10

Rootstock	Scion	Trees per acre	Is the nominated rootstock a part of a MAC trial? (indicate MAC trial by name)	Canopy Volume (M^3) *	PCR_Ct *	Canopy health (5 is best)	Tree Survival (%)	Number of harvests measured
US-1282	Hamlin	182		3.91	24.7		100	8
US-1282	Valencia	182					100	1
US-1282	Valencia	283	Picos, Graves 1, Becks, Parker	1.63		4.3		
US-1283	Hamlin	182		4.13	25.1		100	8
US-1283	Hamlin	121					100	10
US-1283	Valencia	283	Picos, Deseret 1	1.86		4.4	100	
US-1516	Valencia	120	Graves 1, Parker, Bentley II	6.28	27		100	4
US-1516	Hamlin	243					100	3
US-1516	Valencia	283		1.2		3.8	100	1
US-1516	Valencia	283		1.0		4.0		
US-SS3	Valencia	259		2.63		4.0	100	3
US-SS3	Hamlin	243				3.0	100	3
US-SS3	Hamlin	251					100	1
US-2111	Valencia	259		2.34		4.3	100	3
US-2111	Valencia	259		1.33		3.5	100	2
US-2111	Hamlin	243				3.4	100	3
US-2111	Valencia	182					100	1
US-1688	Valencia	259		3.52		4.9	92	3
US-1688	Valencia	174					100	2
US-1281	Hamlin	182		3.00	24.7		100	8
US-1281	Hamlin	121						4
US-1281	Valencia	182					100	1
US-1281	Valencia	283	Picos, Graves 1, Bentley 1, Parker	1.67		3.7	100	
US-1279	Hamlin	182		4.03	25.1		100	8
US-1279	Hamlin	121						4
US-SS1	Hamlin	182						3
US-SS1	Valencia	259		2.38		4.2	90	3
US-2109	Valencia	259		2.32		3.9	100	3
US-2109	Hamlin	243				3.2	100	3
US-2109	Hamlin	251					100	1
US-1694	Valencia	259		2.43		4.4	100	3
US-1694	Valencia	174					67	2
US-1694	Valencia	259		1.1		4.0	100	
US-1284	Hamlin	182		5.28	24.5		100	8
US-SS2	Hamlin	182						3
US-1649	Valencia	259	Bentley II	2.30		4.3	91	3
US-1649	Hamlin	243				3.3	100	3
US-1649	Valencia	259		0.7		3.5	100	
US-2338	Valencia	259		2.33	-	4.5	100	3
US-2338	Valencia	182					100	1
US-1672	Valencia	259		2.83	-	4.6	100	3
US-1709	Valencia	259		2.82		5.0	100	3

		Average	Average	Average	Average	Average	Average	Yield	Annual
		Annual Yield	Cumulative	Annual	Cumulative	Annual	Cumulative	Efficiency	Pound
		per Tree (Kg)	yield per tree	Yield per	yield per	Yield per	Yield per	Kg/Cubic	Solids per
Rootstock	Scion	*	(Kg)	Acre (Kg)	acre (Kg)	Plot (Kg)*	Plot (Kg)	Meter *	Acre *
US-1282	Hamlin	51	374	9,282	68,068				885
US-1282	Valencia	11.7	11.7	2,129	2,129				
US-1282	Valencia								
US-1283	Hamlin	42	348	7,644	63,336				708
US-1283	Hamlin	111	524	13,431	63,404				1143
US-1283	Valencia								
US-1516	Valencia	65	211	7,800	25,320	195	633	10.35	885
US-1516	Hamlin	11.3	17.8	2,746	4,325				
US-1516	Valencia	1.2	1.2	340	340				
US-1516	Valencia								
US-SS3	Valencia	11.4	31.8	2,953	8,236			4.33	317
US-SS3	Hamlin	9.6	14.6	2,333	3,548				
US-SS3	Hamlin	2.4	2.4	602	602				
US-2111	Valencia	14.2	30.9	3,652	8,003			6.07	386
US-2111	Valencia	8.6	15.0	2,227	3,885				
US-2111	Hamlin	8.9	16.2	2,163	3,937				
US-2111	Valencia	11.3	11.3	2057	2057				
US-1688	Valencia	15.6	37.9	4,040	9,816			4.43	388
US-1688	Valencia	20.0	35.5	3,480	6,177				
US-1281	Hamlin	38	319	6,916	58,058				678
US-1281	Hamlin	74	153	8,954	18,513				
US-1281	Valencia	12.6	12.6	2293	2293				
US-1281	Valencia								
US-1279	Hamlin	45	330	8,190	60,060				793
US-1279	Hamlin	55	123	6,655	14,883				
US-SS1	Hamlin	23	33	4,186	6,006				438
US-SS1	Valencia	8.6	20.5	2,227	5,310			3.61	213
US-2109	Valencia	8.5	29.6	2,202	7,666			3.66	229
US-2109	Hamlin	9.8	16.3	2,381	3,961				
US-2109	Hamlin	3.0	3.0	753	753				
US-1694	Valencia	12.7	27.3	3,289	7,071			5.23	324
US-1694	Valencia	18.2	29.5	3,167	5,133				
US-1694	Valencia								
US-1284	Hamlin	47	353	8,554	64,246				826
US-SS2	Hamlin	35	46	6,370	8,372				680
US-1649	Valencia	13.8	29.8	3,574	7,718			6.00	333
US-1649	Hamlin	6.7	14.4	1,628	3,499				
US-1649	Valencia								
US-2338	Valencia	15.8	33.3	4,092	8,625			6.78	398
US-2338	Valencia	14.7	14.7	2,675	2,675				
US-1672	Valencia	14.7	33.0	3,807	8,547			5.19	356
US-1709	Valencia	14.3	30.0	3,704	7,770			5.07	354

								Annual
		Cumulative						Pound
		Pound Solids		Annual	Annual	Annual	Percent	Solids per
Rootstock	Scion	Per Acre	(g) *	Brix*	Acid *	Ratio *	juice	Box *
US-1282	Hamlin	6,489	194	8.67	0.61	14.2		3.90
US-1282	Valencia							
US-1282	Valencia							
US-1283	Hamlin	5,868	190	8.43	0.62	13.6		3.79
US-1283	Hamlin	5,394		7.74	0.73	10.8		3.48
US-1283	Valencia							
US-1516	Valencia	2,872	212	9.41	0.76	12.5	54.8	4.64
US-1516	Hamlin							
US-1516	Valencia							
US-1516	Valencia							
US-SS3	Valencia	886	160	9.14	0.76	12.0	53.5	4.40
US-SS3	Hamlin							
US-SS3	Hamlin							
US-2111	Valencia	845	180	8.61	0.72	12.0	55.8	4.32
US-2111	Valencia		227					
US-2111	Hamlin							
US-2111	Valencia							
US-1688	Valencia	943	175	8.20	0.70	11.7	53.2	3.93
US-1688	Valencia		210					
US-1281	Hamlin	5,691	190	8.90	0.62	14.4		4.01
US-1281	Hamlin							
US-1281	Valencia							
US-1281	Valencia							
US-1279	Hamlin	5,814	193	8.80	0.62	14.1		3.96
US-1279	Hamlin							
US-SS1	Hamlin	628	141	9.7	0.63	15.3	49.0	4.28
US-SS1	Valencia	509	197	8.13	0.71	11.5	53.6	3.92
US-2109	Valencia	798	183	8.74	0.74	11.8	54.2	4.26
US-2109	Hamlin							
US-2109	Hamlin							
US-1694	Valencia	697	196	8.20	0.75	10.9	54.6	4.03
US-1694	Valencia							
US-1694	Valencia							
US-1284	Hamlin	6,203	185	8.77	0.65	13.4		3.95
US-SS2	Hamlin	894	151	9.9	0.63	15.8	49.0	4.37
US-1649	Valencia	719	188	8.13	0.69	11.8	52.1	3.81
US-1649	Hamlin			-		-		-
US-1649	Valencia							
US-2338	Valencia	839	195	8.08	0.66	12.2	54.7	3.98
US-2338	Valencia		_,,,					
US-1672	Valencia	800	169	8.14	0.72	11.3	52.3	3.83
US-1709	Valencia	743	168	8.17	0.70	11.7	53.2	3.91

USDA Rootstocks - Ranking for potential use in stage 3 trials

Kim.Bowman@usda.gov

	Willian@usu	USDA		
Rank	Rootstock	Status	DPI Status	Narrative on rootstock performance in replicated sweet orange trials
1	US-1282	Released	Available	US-1282 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is high solids.
2	US-1283	Released	Available	US-1283 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is medium solids.
3	US-1516	Released	Available	US-1516 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is medium solids.
4	US-SS3	Released	Available	US-SuperSour 3 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is high solids.
5	US-2111	Need MTA	Finished	US-2111 had superior yields in two multiyear trials severely affected by HLB; looking good in two younger trials; fruit is high solids.
6	US-1688	Need MTA	Finished	US-1688 had superior yields in two multiyear trials severely affected by HLB; fruit is high solids.
7	US-1281	Released	Available	US-1281 had superior yields in two multiyear trials severely affected by HLB; looking good in two younger trials; fruit is high solids.
8	US-1279	Released	Available	US-1279 had superior yields in two multiyear trials severely affected by HLB; fruit is high solids.
9	US-SS1	Released	Available	US-SuperSour 1 had medium yields in two multiyear trials severely affected by HLB; fruit is high solids.
10	US-2109	Need MTA	Finished	US-2109 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is high solids.
11	US-1694	Need MTA	Finished	US-1694 had superior yields in two multiyear trials severely affected by HLB; looking good in one younger trial; fruit is high solids.
12	US-1284	Released	Available	US-1284 had superior yield in one multiyear trial severely affected by HLB; fruit is high solids.
13	US-SS2	Released	Available	US-Supersour 2 had superior yield in one multiyear trial severely affected by HLB; fruit is high solids.
14	US-1649	Need MTA	Finished	US-1649 had superior yield in one multiyear trial severely affected by HLB; looking good in two younger trials; fruit is high solids.
15	US-2338	Need MTA	Finished	US-2338 had superior yield in one multiyear trial severely affected by HLB; looking good in one younger trial; fruit is high solids.
16	US-1672	Need MTA	Finished	US-1672 had superior yield in one multiyear trial severely affected by HLB; fruit is high solids.
17	US-1709	Need MTA	Finished	US-1709 had superior yield in one multiyear trial severely affected by HLB; fruit is high solids.

MEMORANDUM

To: Member of the CRDF Select Committee on Plant Improvement From: Rick Dantzler RE: Staff Recommendations for the CRDF Phase III Field Trial Date: November 25, 2020

Note: Sorting through the data provided by the plant breeders has been difficult. Each has his or her own way of working material through the plant breeding pipeline and there is not a standard way of measuring relevant growing characteristics of each cultivar. The difficulties of comparing the cultivars has reinforced my belief that it is imperative that uniformity be brought to our plant breeding efforts or the frustration growers have felt when trying to analyze data to make planting decisions will continue.

Please pardon the dictum, but I'm told that nearly every other crop in commercial production has a standardized method for plant evaluation, which includes clearly defined objectives and measurements for advancing new plant material from the point of creation to the point of release to the industry. Citrus has unique challenges, certainly, but some level of standardization is crucial.

I am sure that you will have comments on these recommendations. It is entirely possible that we missed something in our analysis, but please know that many hours from several persons went into trying to compare the nominations from the breeders.

While we have tried to fairly present the most worthy nominations, with so little data accompanying some of the them and because the breeding efforts have been so varying it is my belief that we should not take final action on the recommendations at the December 2nd meeting. Instead, I suggest that we only discuss them and wait until the next meeting (sometime in January) before taking final action. While I had hoped we would have these recommendations in time for board action in December, we must get it right since making the proper selections is the lynchpin for the success of the trial. CRDF staff will take the comments from the breeders and committee members at the December 2nd meeting and prepare a list for your consideration and vote in January.

Note: Staff is aware that there are Lykes Brothers' small plot trials underway that are an excellent source of quality data on rootstock performance. Top performers are being evaluated and will be ready for your consideration at the meeting in January.

700 Experiment Station Rd. • Lake Alfred, FL 33850 • Phone: (863) 956-5894

Rootstock Nominations for CRDF Phase 3 Field Trials:

- 1. US-1282
 - a. Yes calculated boxes per acre is 227. This value come from a 20-year-old trial in St. Lucie County. The solids per box is 3.9 with Hamlin as the scion. Solids will likely increase with scions that produce better quality fruit. Tree survivability is 100% at 3 separate locations.
- 2. US-1283
 - a. Yes calculated boxes per acre is 329. This value comes from an 18-year-old trial in Lake County. The solids per box is 3.48 with Hamlin as the scion. Solids will likely increase with scion that produce better quality fruit. Tree survivability is 100% at 3 separate locations.
- 3. US-1516
 - Yes calculated boxes per acre is 190. This value comes from a 12-year-old trial in Polk County. The solids per box is 4.64 with Valencia as the scion. Tree survivability is 100% at 3 separate locations.
- 4. US-SS3
 - No the calculation of boxes per acre is low for this rootstock in 3 trial locations. The highest calculated boxes per acre value is 72. This value comes from a 6-year-old trial in St. Lucie County. Two 5-year-old trials in Lake County had lower boxes per acre, 57 and 14. Pound solids were 4.4 per box.
- 5. US-2111
 - No the calculation of boxes per acre is low for this rootstock in 4 trial locations. The highest calculated boxes per acre value is 90. This value comes from a 6-year-old trial in St. Lucie County. Two 5-year-old trials in Lake County and St. Lucie County had lower boxes per acre, 54 and 52. The final trial site is 4 years old and in Hendry County. This trial had the lowest boxes per acre at 50. Pound solids were 4.3 per box.
- 6. US-1688
 - No the calculation of boxes per acre is low for this rootstock in 2 trial locations. The highest calculated boxes per acre value is 98. This value comes from a 6-year-old trial in St. Lucie County. Another 6-year-old trial in Hendry County had lower boxes per acre, 85. Pound solids were 3.9 per box.
- 7. US-1281
 - Yes calculated boxes per acre is 219. This value comes from a 14-year-old trial in Lake County. The solids per box is 4.01 with Hamlin as the scion. Tree survivability is 100% at 3 separate locations.
- 8. US-1279
 - a. Yes calculated boxes per acre is 200. This value comes from a 20-year-old trial in St. Lucie County. The solids per box is 3.96 with Hamlin as the scion. Tree survivability is 100% at 2 separate locations.
- 9. US-SS1
 - No the calculation of boxes per acre is low for this rootstock in 2 trial locations. The highest calculated boxes per acre value is 102. This value comes from a 9-year-old trial in Lake County. A 6-year-old trial in St. Lucie County had lower boxes per acre, 54. Pound solids were 4.2 and 3.92 per box respectfully for each trial.
- 10. US-2109

700 Experiment Station Rd. • Lake Alfred, FL 33850 • Phone: (863) 956-5894

- Page 3
- No the calculation of boxes per acre is low for this rootstock in 3 trial locations. The highest calculated boxes per acre value is 58. This value comes from a 5-year-old trial in Lake County with Hamlin as the scion. A 6-year-old trial in St. Lucie County had lower boxes per acre, 53. A 5-year-old trial, with Hamlin as the scion, had the lowest calculated boxes per acre, 18. Pound solids were 4.26 per box.

11. US-1694

- No the calculation of boxes per acre is low for this rootstock in 2 of 3 trial locations. The highest calculated boxes per acre value is 80. This value comes from a 6-year-old trial in St. Lucie County with Valencia as the scion. A 6-year-old trial with Valencia as the scion in Hendry County had lower boxes per acre, 77. A 3-year-old trial, with Valencia as the scion, has not had harvest data collected to date. Pound solids were 4.03 per box.
- 12. US-1284
 - a. Yes calculated boxes per acre is 209. This value comes from a 20-year-old trial in St. Lucie County. The solids per box is 3.95 with Hamlin as the scion. This rootstock is only present in one trial location in St. Lucie County. Tree survivability is 100%.
- 13. US-SS2
 - a. Yes calculated boxes per acre is 156. This value comes from a 9-year-old trial in Lake County. The solids per box is 4.37 with Hamlin as the scion. This rootstock is only present in one trial location in Lake County. Tree survivability is not reported.
- 14. US-1649
 - a. No the calculation of boxes per acre is low for this rootstock in 2 of 3 trial locations. The highest calculated boxes per acre value is 87. This value comes from a 6-year-old trial in St. Lucie County with Valencia as the scion. A 5-year-old trial is Lake County had lower boxes per acre, 40. A 3-year-old trial, with Valencia as the scion, has had no harvest data collected to date. Pound solids were 3.81 per box.
- 15. US-2338
 - a. No the calculation of boxes per acre is low for this rootstock in 2 trial locations. The highest calculated boxes per acre value is 100. This value comes from a 6-year-old trial in St. Lucie County with Valencia as the scion. A 4-year-old trial in Lake County had the lower boxes per acre, 65. Pound solids were 3.98 per box.
- 16. US-1672
 - a. No the calculation of boxes per acre is low for this rootstock in a single trial. The calculated boxes per acre value is 93. This value comes from a 6-year-old trial in St. Lucie County with Valencia as the scion. Pound solids were 3.83 per box.
- 17. US-1709
 - a. No the calculation of boxes per acre is low for this rootstock in a single trial. The calculated boxes per acre value is 90. This value comes from a 6-year-old trial in St. Lucie County with Valencia as the scion. Pound solids were 3.91 per box.
- 18. Cleo + Carrizo
 - a. No Data values presented are from only 8 trees. For confidence in selecting this rootstock, more trees of this genotype are needed. The data values presented are encouraging, but additional plantings for this rootstock in various locations would greatly enhance the confidence in the data.

- 19. Blue 1
 - a. No Data values presented are from only 8 trees. For confidence in selecting this rootstock, more trees of this genotype are needed. The data values presented are encouraging, but additional plantings for this rootstock in various locations would greatly enhance the confidence in the data.
- 20. Orange 1804
 - a. No We don't expect seed to be available until July 2021. DPI will then need to screen seed for seed-borne pathogens after the seed is delivered from Argentina.
- 21. Aqua 1803
 - a. No We don't expect seed to available until July 2021. DPI will then need to screen seed for seed-borne pathogens after the seed is delivered from Argentina.
- 22. UFR-5
 - a. Yes It should be noted that data was only for trees at the Orie Lee planting. Nevertheless, this rootstock has been selected by independent growers and is included in a CRAFT Cycle 2 application. The Tropicana research planting in Lake Alfred has UFR 5 budded with Hamlin and an OLL variety. It is reported that these trees are cropping extremely well and additional analysis is forthcoming. UFR 5 is being evaluated in a small-plot trial project hosted by Lykes Brothers and is preforming well. The scion used for this nomination is OLL-8. Calculated boxes per acre is 550. Pound solids per box is 6.9, the highest value for this category from the 30 nominated rootstocks. The data presented is for 2 trees of the indicated rootstock/scion combination. Given this interest and early encouraging performance, staff is recommending it for inclusion in the trial.
- 23. Orange 14
 - a. Yes The data provided with the template is only for trees at the Orie Lee planting. Nevertheless, this rootstock has been selected by independent growers and is included in a CRAFT Cycle 2 application. The Tropicana research planting in Lake Alfred has Orange 14 budded with OLL 10. It is reported these trees are cropping extremely well and additional analysis is forthcoming. Orange 14 is being evaluated in a small plot trial project hosted by Lykes Brothers and is preforming well. The scion used for this nomination is OLL-8. Calculated boxes per acre is 600, the highest value for this category from the 30 nominated rootstocks. Pound solids per box is 6.3. The data presented is for 2 trees of the indicated rootstock scion combination. Given the interest and early encouraging performance, staff is recommending it for inclusion in the trial.
- 24. Orange 16
 - a. No the data values presented are from only 2 trees. For confidence in selecting this rootstock, more trees of this genotype are needed. The data values presented are encouraging, but additional plantings for this rootstock in various locations would greatly enhance the confidence in the data.

25. UFR-1

a. No – the data values presented are from only 2 trees. For confidence in selecting this rootstock, more trees of this genotype are needed. The data values presented are encouraging, but additional plantings for this rootstock in various locations would greatly enhance the confidence in the data. However, this rootstock is being evaluated at the Lykes Brothers trial so more data will be forthcoming.

26. UFR-10

a. Possible – Yield is 562 calculated boxes per acre with Marsh Grapefruit as the scion. If the data values provided are correct, this would indicate extremely good performance for a very HLB susceptible scion. This data comes from a 13-year-old trial in Indian River County. The trial design allows for evaluation of 18 trees (3 replications of 6 trees per replication). More data from other plantings would be helpful.

27. UFR-9

- a. Possible Yield is 495 calculated boxes per acre with Marsh Grapefruit as the scion. If the data values provided are correct, this would indicate extremely good performance for a very HLB susceptible scion. This data comes from a 13-year-old trial in Indian River County. The trial design allows for evaluation of 18 trees (3 replications of 6 trees per replication). More data from other plantings would be helpful.
- 28. A+Volk x Orange 19-11-8
 - a. No No data provided.
- 29. S10xS15-12-25
 - a. No No data provided.
- 30. LB8-9 (SugarBelle)xS13-15-16
 - Yes While data is lacking, the logic is sound. We know LB8-9 preforms well as a scion. The concept that tolerance could be imparted to a scion when using LB8-9 as a rootstock parent is worth exploring. There are 50+ trees planted at the USDA Picos farm. All trees are reported to be in excellent condition.

Rootstock Development – Stage I – III

Please note, this draft document is a work in progress. It is intended to stimulate discussion on how Stage I - III trials should be conducted. This document has not been reviewed, approved, or should not be considered as a consensus of the industry or research community on how to conduct field trials.

In creating a development plan for plant improvement, one must be prepared to adjust or modify as needed to meet the changing needs of the industry, environmental conditions, markets, and pest pressure in the ever-changing Florida citrus industry. To achieve multiple goals in plant improvement, replicated field trials are conducted to evaluate horticultural traits, pest and disease tolerance/resistance, regional sites adaptability, selection of appropriate rootstock/scion combinations and to optimize planting density to maximize profitability. We will refer to these trials in three basic stages: Stage I, II and III.

Breeders have numerous areas where parent material is housed and will be used to create new crosses. Having sufficient sources and numbers of parent material is essential to any successful plant breeding program.

Prior to Stage I field trials, the plant breeder must select parents, make new hybrids, grow out hybrids, conduct pre-screening and testing to identify selected new rootstocks, and then propagate trees on the new rootstocks to be included in Stage I trials. From pre-Stage I and through Stage I, the plant breeder is in complete control of the process and has autonomy to make all crosses, select hybrids, and conduct trials to best make use of resources to achieve the project goals. Crosses may come from a variety of sources, including but not limited to traditional plant breeding, to laboratory procedures to create new plant material, irradiation and other techniques. However, throughout this process, breeders should be in dialog with producers to make sure they are breeding plants that meet the needs of the citrus industry for both fresh and processed markets.

In the UF program prior to field trials, new rootstock selections are subjected to a comprehensive study to determine their ability to survive in harsh conditions which include calcareous soil, high pH, salinity, and two species of phytophthora. Seedlings that remain vigorous and dark green after the study will be moved to additional trials based upon their superior performance in harsh conditions.

Newly created plant material is first tested with only a few trees and later tested with an increasing number of selections that appear to be promising. Currently, a lot of early selection work for rootstocks is being conducted at Orie Lee's property near St. Cloud. The Orie Lee site is comprised mainly of oranges, and those selections that appear promising are shared with the processing industry representative.

UF plant breeders also conduct numerous early work trials at the USDA Picos Farm location in Ft. Pierce.

Work being conducted with triploid material is conducted mostly on properties owned or managed by the CREC. Study sites include the large MAC planting located north of the CREC main campus at the end of Experiment Station Road and the new study site located just south of Eagle Lake. The CREC MAC site has approximately 70 combinations with 40-50 trees per plot. The Saint Helena site is currently being replanted whereby plant material that is not promising is being removed and new selections are being incorporated into that site to allow for larger field testing. Studies are also underway with cooperating

growers (Lykes, Cutrale, etc.). Some other study sites may be a single row or a bed of multiple rootstocks. While these sites provide valuable data, they may not be a formalized trial that will produce data that is replicated, or the data received may not be of sufficient quality to allow it to be published in a peer reviewed journal, but it is still data that has value and serves the industry with additional generalized performance information.

Fast Track with the New Variety Development Foundation also serves as a valuable method to get new varieties into the hands of growers more rapidly than a standard breeding program may have previously allowed.

UF is also involved in a tri-state cooperative program whereby early Valencia (EV), Rio grapefruit, multiple orange selections, lemon, Murcott and Tango are being evaluated. This tri-state program is cooperative funded via Texas Citrus Mutual, California Citrus Research Board, and others.

In the USDA rootstock program, about 80% of researcher time is devoted to Stage I and 20% to Stage II. The USDA rootstock program generally does not conduct extensive Stage III trials. The focus on in Stage I and II trials allows the researcher to maximize resources for creating promising new rootstocks and to efficiently identify those that appear to be the most promising for future trials and to be released to the industry after adequate testing. The analysis of results from well-designed and successfully-completed Stage I and Stage II trials should provide clear information about relative potential of new rootstocks and be suitable for making decisions about small-scale commercial use of the new rootstocks. Major early testing of new plant material selections is being conducted at the USDA Picos Farm location in Ft. Pierce.

Plant material from both programs (UF and USDA) are also being incorporated into planting sites at the MAC trial location in Eagle Lake, Pantuso Citrus as well at other sites around the state.

An effective way to showcase some new varieties is to offer various fruit displays over the production season at grower events (Florida Citrus Show) and various research and education centers.

For a more comprehensive review of the citrus improvement program, please see the article "Comprehensive Citrus Genetic Improvement Program (Chapter 1) authored by Gmitter, Grosser, Castle and Moore. While this document is 10-15 years old, it can serve as a basis for plant improvement. This document is also being rewritten to update the article to include how HLB has impacted the plant breeding process.

Results from multiple trials are currently available on websites hosted by both UF (<u>https://crec.ifas.ufl.edu/citrus-research/rootstock-trials/</u>) and USDA (https://citrusrootstocks.org/).

Trial Experimental Design:

- All trials should have an experimental design (randomized or randomized block design) that maximizes statistical analysis.
- Actual design will depend on space available (both length and width of the area) for the trial but should contain a minimum of 6 replications and preferable multiple tree replications, when and where possible.
- Trees in a given trial should come from the same nursery source and planted at the same time to avoid trail variability.

• The trial area should have a uniform soil type and irrigation system. When possible, trial area should avoid rows adjacent to drainage ditches or canals where the soil may be different than the remainder of the block, and plant border trees at the end of the rows.

Data collected should include:

- Tree size
 - Measure trunk diameter at 5 cm above the bud union and measure the same location every year. These measurements should be perpendicular directions and use the average of the two measurements in data analysis. Trunk cross sectional area can be calculated using the formula [π x (diameter/2)²]. This data is important in Stage I and II trials but may not be necessary in Stage III trials.
 - Measure tree height to the top of the average canopy height and avoid any vigorous shoots that extend significantly beyond the top of the canopy.
 - Canopy diameter measured parallel and perpendicular to the row.
- Calculate canopy area and/or volume from the tree height and diameter measurements.
- Calculate standard canopy volume using the formula: [(diameter parallel to row x diameter perpendicular to row) x height/4], modified from Wutscher and Hill (1995).
- If nutrition is part of the study, determine leaf macro and micronutrient concentrations annually based upon IFAS recommendations, which is 4-6-month-old foliage collected in July-August.
- Report percentage of dead trees periodically. Dead trees should be excluded from further ratings and analysis.
- Since all areas in Florida have endemic HLB, conduct foliar disease ratings two times per year in the summer and winter using a scale from 1-5, with 1 = no foliar disease symptoms, 2 = foliar symptoms on less than 25% of leaves, 3 = 25-50% of leaves with symptoms, 4 = 50-75% of leaves with symptoms, 5 = greater than 75% of leaves with symptoms. The rating should be done using UF IFAS Disease Index (DI) Rating Method by B. Page and S. Slinski, April 2016. Conduct ratings the same time each year is preferable. Currently not all rating numbering systems are the same between researchers, and a standardized numbering system should be adopted.
- PCR tissue analysis should be conducted by collecting the leaves from the most recently matured new flush and use petiole/midribs for CLas detection. Depending on tree size, collect one or more leaves randomly from each of the four cardinal directions. The same lab should be used over the life of the trial to minimize any difference in laboratory procedures that may impact reported results.
- Once trees reach maturity, collect fruit yield and quality assessment data for each season. Conduct yield and fruit quality assessment at dates that are standard harvest time for that cultivar, or harvest times that are proposed for new cultivars. Report date of assessment.
 - Yield assess directly by weighing fruits per replicate. Report as fruit weight per experimental unit. Alternatively, yield can be measured as boxes of fruit per tree.
 - Fruit weight determine from random subsample of fruits from each tree, or group, depending on what is practical.
 - Fruit size determine from subsample of fruits from each tree or group depending on what is practical for the situation. Measure the horizontal or vertical diameter (as appropriate) of the subsample of fruit collected for determination of fruit weight.

- Fruit quality depending on the type for fruit and trial purpose, determine percent juice, brix, acid, brix/acid ratio, pound solids, external color, and juice color from subsample of fruits according to standard laboratory methods.
- Sampling time will vary based on scion variety maturity and other factors. Select item that is most appropriate for the scion variety under evaluation.
- Where possible, assess percentage of visually abnormal greening-affected fruit per tree.
- Assess pre-harvest fruit drop. Report as percent drop from fruit number data.

Stage I

Stage I is the first stage where replicated field trials with the new rootstocks are conducted. In many cases, the rootstock plants in USDA and UF Stage I will be grown from cuttings. The reason to use cuttings is to shorten the time needed to generate plants from new hybrids. Waiting for the newly created hybrids to fruit and produce seeds would typically add an additional 6 to 12 years to the process. In addition, uniform seed propagation can only be obtained from a small portion of citrus genetic material. Although propagation of citrus rootstocks by seed is a good convenience, it is now quite practical to propagate citrus rootstocks being tested to include those that do not produce apomictic seeds will greatly increase the opportunity to find the one rootstock that has the ideal combination of disease tolerance along with favorable effects on yield, fruit quality, and tree size.

USDA Stage I trials are usually a single tree or several tree replications and with 8-12 replications per selection and planted as a randomized block design. Within a given Stage I trial, 30-80 new rootstocks, along with commercial standards, are included to provide for sufficient statistical analysis and is an economical use of field space. Trees for USDA Stage I trials are always propagated in the USDA citrus nursery in Ft. Pierce because of the complexity of coordinating propagation of so many different rootstocks and propagation types. A typical Stage I trial occupies 2-3 acres of space. UF trials may use a different number of trees and replications as well as where the trees are produced.

Stage I trials are usually conducted long enough to produce 4 to 5 harvest seasons which makes these trials at least 6 to 8 years in duration. The 4 to 5 harvest seasons will allow sufficient data to create peer reviewed publications and good confidence in the results. In some cases, Stage I trials may last longer than the 6-8 years depending on the ability to collect sufficient data for the decision making.

In recent years, new releases are made at the end of Stage I trials. Historically, releases were not made from Stage I trials as longer-term Stage II trials generated more data allowing the researcher to have greater confidence in potential releases. However, today growers feel they cannot wait longer to receive new plant material and are willing to accept new releases with fewer years of data.

Data collected in Stage I includes: tree survival, crop size (amount of fruit per tree), fruit quality, tree size, tree rating, and HLB status.

Most USDA Stage I trials use Valencia or Hamlin sweet orange scion. Stage I usually has 3 or 4 industry standard rootstocks, and most likely will include: Swingle, sour orange, and Cleo.

From Stage I trials, the researcher can make decisions as to what to include in future Stage II trials.

Stage II

Rootstocks in Stage II trials are selected from the best performing selections from Stage I trials. Stage II trials usually contain fewer rootstocks per trial as compared to Stage I, more trees per replication and more industry standard rootstocks for comparison. Typical Stage II trials contain 10-25 different rootstocks, and with 12-24 trees per rootstock, planted as 6-8 replication of 2-4 trees in a randomized block design. Often Stage II trials make use of a scion different than used in the Stage I trial(s). Trees for USDA Stage II trials are usually propagated in the USDA citrus nursery in Ft. Pierce because of the complexity of coordinating propagation of different rootstock and propagation types. A Stage II trial typically occupies 1-3 acres. The types of data collected form Stage II trials is usually the same as collected in Stage I trials.

Rootstocks and scions used in Stage II trials should be selected based upon outstanding performance in Stage I trials. Selection of trial plant material should be done in consultation with both growers, industry (packing and processing) and breeders to ensure industry needs are being fully investigated. Plant material for Stage II trials need to be based upon previously determined selection criteria that Stage I trials provide.

Stage II trials should include both UF and USDA rootstocks to allow for comparisons between both agencies and to better inform growers of full rootstock options.

Stage III

Stage III trials are usually left up to the industry to do these larger type field trials, although UF and USDA are supportive of the idea and willing to participate by providing rootstocks, scions, experimental design and interpretation of results. Stage III trials will usually have larger plot size and include multiple scion and rootstocks.

Stage III trials should include the "winners" from multiple trials and programs. In many of the largescale field trials, only a subset of the trees in a given replication are evaluated for data collection, whereas, in the earlier Stage I and II trials, all trees are usually evaluated and are used for data collection.

Just like in Stage II trials, trials should include both UF and USDA rootstocks to allow a full comparison of all rootstock options.

It was also stated that it is difficult to include plant material from other sources (California, Spain, Argentina, Brazil, etc.) in early Stage I or II trials due to limited space and time. Additionally, plant material from other regions can be difficult to obtain quickly enough to get them through the cleanup process to be included in trials or into some nursery production systems. Nevertheless, these are, potentially, exceptional rootstocks, so it would benefit the industry if a more effective system for testing these materials could be devised.

Nomination	classificaiton	Rootstock	Scion	County	Trial name	Availability	Planting Date
1	nomination	Cleo+Carrizo	Vernia	Polk	St. Helena	seed/TC	Apr-08
1	control	Cleo	Vernia	Polk	St. Helena		Apr-08
2	nomination	Blue 1	Vernia	Polk	St. Helena	seed	Apr-08
2	control	Cleo	Vernia	Polk	St. Helena		Apr-08
3	nomination	Orange 1804	Vernia	Polk	St. Helena	seed	Apr-08
5	control	Cleo	Vernia	Polk	St. Helena		Apr-08
4	nomination	Aqua 1803	Vernia	Polk	St. Helena	seed	Apr-08
4	control	Cleo	Vernia	Polk	St. Helena		Apr-08
5	nomination	UFR-5	OLL-8	Osceola	Orie Lee	seed	Jun-13
5	control	Swingle	OLL-8				Jun-13
6	nomination	Orange 14	OLL-8	Osceola	Orie Lee	seed	Jun-13
U	control	Swingle	OLL-8				Jun-13
7	nomination	Orange 16	OLL-8	Osceola	Orie Lee	seed	Jun-13
,	control	Swingle	OLL-8				Jun-13
8	nomination	UFR-1	OLL-8	Osceola	Orie Lee	seed	Jun-13
0	control	Swingle	OLL-8				Jun-13
9	nomination	UFR-10	Marsh gft	Indian River	IR	TC	Mar-07
5	control	C-22	Marsh gft				
10	nomination	UFR-9	Marsh gft	Indian River	IR	TC	Mar-07
10	control	C-22	Marsh gft				

Nomination	Trees per Replication	Number of Replications	Canopy Volume (M^3) *	average tree diameter	predicted optimum trees/acre	PCR_ Ct *	Average Yield per Tree (Kg) *	Average Yield per Tree (Boxes) *
1	4	2		8.6	256		73.48	1.80026
1	4	2		10.4	211		67.36	1.65032
2	4	2		10.5	209		91.85	2.250325
Z	4	2		10.4	211		67.4	1.6513
3	4	2		10.5	182	32	116.35	2.850575
5	4	2		10.4	211		67.4	1.6513
4	4	2		9.7	226	31.5	87.8	2.1511
4	4	2		10.4	211		67.4	1.6513
5	2	1					89.8	2.2001
	2	1					40.8	0.9996
6	2	1					98	2.401
U	2	1					40.8	0.9996
7	2	1					72.5	1.77625
,	2	1					40.8	0.9996
8	2	1					77.6	1.9012
0	2	1					40.8	0.9996
9	6	3					102.1	2.50145
5	6	3					83.7	2.05065
10	6	3					89.8	2.2001
10	6	3					83.7	2.05065

Nomination	% increase compared to the standard (Kg)	Average boxes/tree past 2 seasons	Average Annual Yield per Plot (Kg)*	Average Annual Yield per Plot (Boxes)*	% increase compared to the standard (Kg)	Average Cumulative Yield per Plot (Kg)	Yield Efficiency Kg/Cubic Meter *
		1.8	293.9	7.20055			
1	9.085510689	1.65	269.4	6.6003	9.094283593		
		2.25	367.4	9.0013			
2	36.27596439	1.65	269.4	6.6003	36.37713437		
		2.85	465.4	11.4023			
3	72.62611276				72.75426875		
		1.65	269.4	6.6003			
4	30.26706231	2.15	351.1	8.60195	30.32665182		
		1.65	269.4	6.6003			
5	120.0980392	2.2	179.6	4.4002	120.0980392		
		1	81.6	1.9992			
6	140.1960784	2.4	196	4.802	140.1960784		
U	140.1500784	1	81.6	1.9992	140.1500784		
7	77.69607843	1.8	145	3.5525	77.69607843		
/	//.0900/843	1	81.6	1.9992	//.0900/843		
8	00 10 0 78 42	1.9	155	3.7975	80.05008030		
ð	90.19607843	1	81.6	1.9992	89.95098039		
	24 0022726	2.5	612.6	15.0087	24 0022726		
9	21.9832736	2.1	502.2	12.3039	21.9832736		
		2.2	539	13.2055			
10	7.287933094	2.05	502.2	12.3039	7.327757865		

Nomination	Annual Pound Solids per Acre average last 2 seasons	% increase compared to the standard (pound solids per acre)	Projected Cumulative Pound Solids Per Acre	Fruit Size (g) *	AnnualB rix*	Annual Acid *	Annual Ratio *
1	3115 1982	57.16448032	21,214 11,089				
2	2,940 1,982	48.33501514	20,579 11,089				
3	3,380 1,982	70.53481332	20,503 11,089				
4	3,191 1,982	60.99899092	19,863 11,089				
5		#DIV/0!			12.2 12.2		
6		#DIV/0!			11.3 12.2		
7		#DIV/0!			11.9 12.2		
8		#DIV/0!			12.3 12.2		
9		#DIV/0!					
10		#DIV/0!					

Nomination	Annual Pound Solids per Box average of last two seasons *	% increase compared to the standard (Pound Solids per box)
1	6.8 5.75	18.26086957
2	6.3 5.75	9.565217391
3	6.45 5.75	12.17391304
4	6.5 5.75	13.04347826
5	6.9 6.75	2.222222222
6	6.3 6.75	-6.666666667
7	6.8 6.75	0.740740741
8	6.85 6.75	1.481481481
9	4.1 4.15	-1.204819277
10	4.1 4.15	-1.204819277

Rootstock							Date	Replication
	nomination	US-1282	Hamlin	St Lucie	USDA Picos 2000	no MTA - no seed	2000	1
L	standard	Swingle	Hamlin	St Lucie	USDA Picos 2000		2000	1
1	nomination	US-1282	Valencia	Hendry	USDA LaBelle 2016	no MTA - no seed	2016	1
1	standard	Swingle	Valencia	Hendry	USDA LaBelle 2016		2016	1
1	nomination	US-1282	Valencia	St Lucie	Picos 2017 MAC	no MTA - seed available	2017	3
1	standard	Sour orange	Valencia	St Lucie	Picos 2017 MAC		2017	3
2	nomination	US-1283	Hamlin	St Lucie	USDA Picos 2000	no MTA - seed available	2000	1
2	standard	Swingle	Hamlin	St Lucie	USDA Picos 2000		2000	1
2	nomination	US-1283	Hamlin	Lake	USDA Conserv 2002	no MTA - seed available	2002	2
2	standard	Swingle	Hamlin	Lake	USDA Conserv 2002		2002	2
2	nomination	US-1283	Valencia	St Lucie	Picos 2017 MAC	no MTA - seed available	2017	3
2	standard	Sour orange	Valencia	St Lucie	Picos 2017 MAC		2017	3
3	nomination	US-1516	Valencia	Polk	JSDA Lake Wales 2008	no MTA - seed available	2008	3
ŗ	standard	Swingle	Valencia	Polk	JSDA Lake Wales 2008	3	2008	3
3	nomination	US-1516	Hamlin	Lake	USDA WF 2015	no MTA - seed available	2015	1
, ,	standard	Swingle	Hamlin	Lake	USDA WF 2015		2015	1
3	nomination	US-1516	Valencia	St Lucie	USDA Picos 2016	no MTA - seed available	2016	1
, ,	standard	Sour orange	Valencia	St Lucie	USDA Picos 2016		2016	1
3	nomination	US-1516	Valencia	St Lucie	USDA Picos 2017-5	no MTA - seed available	2017	1
5	standard	Sour orange	Valencia	St Lucie	USDA Picos 2017-5		2017	1
4	nomination	US-SS3	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
4	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
4	nomination	US-SS3	Hamlin	Lake	USDA WF 2015		2015	1
4	standard	Swingle	Hamlin	Lake	USDA WF 2015		2015	1
4	nomination	US-SS3	Hamlin	Lake	USDA WF 2015b7		2015	1
4	standard	Sour orange	Hamlin	Lake	USDA WF 2015b7		2015	1
5	nomination	US-2111	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
J	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1

Breeder Ranking of

Nominated classification Rootstock Scion County Trial name Availability	Planting	Trees per
Rootstock	Date	Replication

5	nomination	US-2111	Valencia	St Lucie	USDA Picos 2015	need MTA - no seed	2015	1
5	standard	Sour orange	Valencia	St Lucie	USDA Picos 2015		2015	1
F	nomination	US-2111	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2015	1
5	standard	Swingle	Hamlin	Lake	USDA WF 2015		2015	1
-	nomination	US-2111	Valencia	Hendry	USDA LaBelle 2016	need MTA - no seed	2016	1
5	standard	Swingle	Valencia	Hendry	USDA LaBelle 2016		2016	1
C	nomination	US-1688	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
6	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
G	nomination	US-1688	Valencia	Hendry	USDA LaBelle 2014 V	need MTA - no seed	2014	2
6	standard	Carrizo	Valencia	Hendry	USDA LaBelle 2014 V		2014	2
7	nomination	US-1281	Hamlin	St Lucie	USDA Picos 2000	no MTA - no seed	2000	1
7	standard	Swingle	Hamlin	St Lucie	USDA Picos 2000		2000	1
7	nomination	US-1281	Hamlin	Lake	USDA Conserv 2006	no MTA - no seed	2006	1
7	standard	Swingle	Hamlin	Lake	USDA Conserv 2006		2006	1
7	nomination	US-1281	Valencia	Hendry	USDA LaBelle 2016	no MTA - no seed	2016	1
7	standard	Swingle	Valencia	Hendry	USDA LaBelle 2016		2016	1
7	nomination	US-1281	Valencia	St Lucie	Picos 2017 MAC	no MTA - seed available	2017	2
7	standard	Sour orange	Valencia	St Lucie	Picos 2017 MAC		2017	3
0	nomination	US-1279	Hamlin	St Lucie	USDA Picos 2000	no MTA - no seed	2000	1
8	standard	Swingle	Hamlin	St Lucie	USDA Picos 2000		2000	1
0	nomination	US-1279	Hamlin	Lake	USDA Conserv 2006	no MTA - no seed	2006	1
8	standard	Swingle	Hamlin	Lake	USDA Conserv 2006		2006	1
â	nomination	US-SS1	Hamlin	Lake	USDA WF 2011	no MTA - no seed	2011	1
9	standard	Swingle	Hamlin	Lake	USDA WF 2011		2011	1
0	nomination	US-SS1	Valencia	St Lucie	USDA Picos 2014		2014	1
9	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
10	nomination	US-2109	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
10	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
10	nomination	US-2109	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2015	1
10	standard	Swingle	Hamlin	Lake	USDA WF 2015		2015	1
10	nomination	US-2109	Hamlin	Lake	USDA WF 2015b7		2015	1
10	standard	Sour orange	Hamlin	Lake	USDA WF 2015b7		2015	1
11	nomination	US-1694	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1

11	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
	nomination	US-1694	Valencia	Hendry	USDA LaBelle 2014 V	need MTA - no seed	2014	2
11	standard	Carrizo	Valencia	Hendry	USDA LaBelle 2014 V		2014	2
11	nomination	US-1694	Valencia	St Lucie	USDA Picos 2017	need MTA - no seed	2017	1
11	standard	Sour orange	Valencia	St Lucie	USDA Picos 2017		2017	1
12	nomination	US-1284	Hamlin	St Lucie	USDA Picos 2000	no MTA - seed available	2000	1
12	standard	Swingle	Hamlin	St Lucie	USDA Picos 2000		2000	1
13	nomination	US-SS2	Hamlin	Lake	USDA WF 2011	no MTA - no seed	2011	1
15	standard	Swingle	Hamlin	Lake	USDA WF 2011		2011	1
14	nomination	US-1649	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
14	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
14	nomination	US-1649	Hamlin	Lake	USDA WF 2015	need MTA - no seed	2015	1
14	standard	Swingle	Hamlin	Lake	USDA WF 2015		2015	1
1.4	nomination	US-1649	Valencia	St Lucie	USDA Picos 2017	need MTA - no seed	2017	1
14	standard	Sour orange	Valencia	St Lucie	USDA Picos 2017		2017	1
15	nomination	US-2338	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
15	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
15	nomination	US-2338	Valencia	Hendry	USDA LaBelle 2016	need MTA - no seed	2016	1
15	standard	Swingle	Valencia	Hendry	USDA LaBelle 2016		2016	1
16	nomination	US-1672	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
10	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1
17	nomination	US-1709	Valencia	St Lucie	USDA Picos 2014	need MTA - no seed	2014	1
17	standard	Sour orange	Valencia	St Lucie	USDA Picos 2014		2014	1

Breeder Ranking of Nominated Rootstock	Number of Replications	Trees per acre	Is the nominated rootstock a part of a MAC trial? (indicate MAC trial by name)	Canopy Volume (M^3) *	PCR_ Ct *	Canopy health (5 is best)	Tree Survival (%)	Number of harvests measured
1	7	182		3.91	24.7		100	8
1	7	182		2.22	25.1		100	8
1	5	182					100	1
1	5	182					100	1
1	6	283	Picos, Graves 1, Becks, Parker	1.63		4.3		
1	6	283		1.05		3.9		
2	7	182		4.13	25.1		100	8
2	7	182		2.22	25.1		100	8
2	6	121					100	10
2	6	121					100	10
2	7	283	Picos, Deseret 1	1.86		4.4	100	
Z	6	283		1.05		3.9	100	
3	7	120	Graves 1, Parker, Bentley II	6.28	27		100	4
5	7	120		4.95	26.8		90	4
3	8	243					100	3
Э	8	243					100	3
3	12	283		1.2		3.8	100	1
Э	12	283		0.9		3.0	100	1
3	12	283		1.0		4.0		
Э	12	283		0.8		3.6		
4	10	259		2.63		4.0	100	3
4	15	259		2.59		4.4	100	3
4	8	243				3.0	100	3
4	8	243				3.2	100	3
4	8	251					100	1
4	8	251					100	1
5	11	259		2.34		4.3	100	3
5	15	259		2.59		4.4	100	3

1	4.2	250		4.00		2 5	400	
5	12	259		1.33		3.5	100	2
	12	259		1.12		2.8	100	2
5	8	243				3.4	100	3
3	8	243				3.2	100	3
5	5	182					100	1
5	5	182					100	1
6	11	259		3.52		4.9	92	3
0	15	259		2.59		4.4	100	3
C	3	174					100	2
6	3	174					100	2
7	7	182		3.00	24.7		100	8
7	7	182		2.22	25.1		100	8
_		121						4
7		121						4
_	5	182					100	1
7	5	182					100	1
_	6	283	Picos, Graves 1, Bentley 1, Parker	1.67		3.7	100	
7	6	283		1.05		3.9	100	
	7	182		4.03	25.1		100	8
8	7	182		2.22	25.1		100	8
		121						4
8		121						4
	5	182						3
9	5	182						3
	9	259		2.38		4.2	90	3
9	15	259		2.59		4.4	100	3
	8	259		2.32		3.9	100	3
10	15	259		2.59		4.4	100	3
	8	243				3.2	100	3
10	8	243				3.2	100	3
	8	251					100	1
10	8	251					100	1
	10	259		2.43		4.4	100	3

11	15	259		2.59		4.4	100	3
	3	174					67	2
11	3	174					100	2
	12	259		1.1		4.0	100	
11	12	259		0.7		3.2	100	
10	7	182		5.28	24.5		100	8
12	7	182		2.22	25.1		100	8
13	5	182						3
15	5	182						3
14	10	259	Bentley II	2.30		4.3	91	3
14	15	259		2.59		4.4	100	3
14	8	243				3.3	100	3
14	8	243				3.2	100	3
14	12	259		0.7		3.5	100	
14	12	259		0.7		3.2	100	
15	8	259		2.33		4.5	100	3
15	15	259		2.59		4.4	100	3
15	5	182					100	1
15	5	182					100	1
16	10	259		2.83		4.6	100	3
10	15	259		2.59		4.4	100	3
17	10	259		2.82		5.0	100	3
±7	15	259		2.59		4.4	100	3

Breeder Ranking of Nominated Rootstock	Average Annual Yield per Tree (Kg) *	Average Annual Yield per Tree (Boxes) *	% increase compared to the standard (Kg)	Average Cumulative yield per tree (Kg)	Average Cumulative yield per tree (Boxes)	% increase compared to the standard (Kg)
1	51	1.2495	628.5714286	374	9.163	116.1849711
-	7	0.1715	02010717200	173	4.2385	11011010711
1	11.7	0.28665	125	11.7	0.28665	125
-	5.2	0.1274	125	5.2	0.1274	120
1		0	#DIV/0!		0	#DIV/0!
-		0	<i>"Divyo</i> :		0	1010/0.
2	42	1.029	500	348	8.526	101.1560694
2	7	0.1715	500	173	4.2385	101.1500094
2	111	2.7195	19.35483871	524	12.838	21.01616628
2	93	2.2785	19.55465671	433	10.6085	21.01010028
2		0	#DIV/0!		0	#DIV/0!
2		0	#DIV/0!		0	#01070!
3	65	1.5925	16.07142857	211	5.1695	17.22222222
3	56	1.372	10.07142857	180	4.41	17.2222222
2	11.3	0.27685		17.8	0.4361	22.02450647
3	9.2	0.2254	22.82608696	13.3	0.32585	33.83458647
2	1.2	0.0294	50	1.2	0.0294	50
3	0.8	0.0196	50	0.8	0.0196	50
		0			0	
3		0	#DIV/0!		0	#DIV/0!
	11.4	0.2793	2 200020500	31.8	0.7791	50 45044005
4	11.8	0.2891	-3.389830508	20.9	0.51205	52.15311005
	9.6	0.2352	4.2.47026067	14.6	0.3577	0.77440600
4	9.2	0.2254	4.347826087	13.3	0.32585	9.77443609
	2.4	0.0588	4.40	2.4	0.0588	1.12
4	1.0	0.0245	140	1.0	0.0245	140
_	14.2	0.3479	20.22000205	30.9	0.75705	47.04600005
5	11.8	0.2891	20.33898305	20.9	0.51205	47.84688995

_	8.6	0.2107		15.0	0.3675	
5	4.5	0.11025	91.11111111	9.5	0.23275	57.89473684
	8.9	0.21805		16.2	0.3969	
5	9.2	0.2254	-3.260869565	13.3	0.32585	21.80451128
	11.3	0.27685		11.3	0.27685	
5	5.2	0.1274	117.3076923	5.2	0.1274	117.3076923
_	15.6	0.3822		37.9	0.92855	
6	11.8	0.2891	32.20338983	20.9	0.51205	81.33971292
c	20.0	0.49	27.024.024.40	35.5	0.86975	65 00705047
6	14.5	0.35525	37.93103448	21.4	0.5243	65.88785047
_	38	0.931	442.0574.420	319	7.8155	04 20206250
7	7	0.1715	442.8571429	173	4.2385	84.39306358
7	74	1.813	100	153	3.7485	50
7	37	0.9065	100	102	2.499	50
7	12.6	0.3087	142 207(022	12.6	0.3087	142 2070022
/	5.2	0.1274	142.3076923	5.2	0.1274	142.3076923
7		0	#DIV//01		0	#DIV//01
7		0	#DIV/0!		0	#DIV/0!
0	45	1.1025	F 42 0F 71 420	330	8.085	00 75144500
8	7	0.1715	542.8571429	173	4.2385	90.75144509
0	55	1.3475	49.64964965	123	3.0135	20 58822520
8	37	0.9065	48.64864865	102	2.499	20.58823529
9	23	0.5635		33	0.8085	10
9	22	0.539	4.545454545	30	0.735	10
9	8.6	0.2107	-27.11864407	20.5	0.50225	-1.913875598
9	11.8	0.2891	-27.11804407	20.9	0.51205	-1.9138/5598
10	8.5	0.20825	-27.96610169	29.6	0.7252	41.62679426
10	11.8	0.2891	-27.90010109	20.9	0.51205	41.02079420
10	9.8	0.2401	6.52173913	16.3	0.39935	22.55639098
10	9.2	0.2254	0.521/3913	13.3	0.32585	22.33039098
10	3.0	0.0735	200	3.0	0.0735	200
10	1.0	0.0245	200	1.0	0.0245	200
11	12.7	0.31115	7 677118611	27.3	0.66885	20 62200057

11	11.8	0.2891	1.02/110044	20.9	0.51205	30.02200337	
11	18.2	0.4459		29.5	0.72275	27.05046720	
11	14.5	0.35525	25.51724138	21.4	0.5243	37.85046729	
11		0	#DIV/0!		0		
11		0	#DIV/0!		0	#DIV/0!	
12	47	1.1515	571.4285714	353	8.6485	104.0462428	
12	7	0.1715	5/1.4205/14	173	4.2385	104.0402428	
13	35	0.8575	59.09090909	46	1.127	53.33333333	
15	22	0.539	59.09090909	30	0.735	55.55555555	
14	13.8	0.3381	16.94915254	29.8	0.7301	42.58373206	
14	11.8	0.2891	10.94913234	20.9	0.51205	42.36373200	
14	6.7	0.16415	-27.17391304	14.4	0.3528	8.270676692	
14	9.2	0.2254	-27.17591504	13.3	0.32585	8.270070092	
14		0	#DIV/0!		0	#DIV/0!	
14		0	#DIV/0!		0	#DIV/0!	
15	15.8	0.3871	33.89830508	33.3	0.81585	59.33014354	
15	11.8	0.2891	55.89850508	20.9	0.51205	59.55014554	
15	14.7	0.36015	182.6923077	14.7	0.36015	182.6923077	
15	5.2	0.1274	102.0923077	5.2	0.1274	102.0923077	
16	14.7	0.36015	24.57627119	33.0	0.8085	57.89473684	
10	11.8	0.2891	24.3/02/119	20.9	0.51205	57.09475084	
17	14.3	0.35035	21.18644068	30.0	0.735	43.54066986	
17	11.8	0.2891	21.10044008	20.9	0.51205	43.3400980	

Breeder Ranking of Nominated Rootstock	Average Annual Yield per Acre (Kg)	Average Annual Yield per Acre (Boxes)	% increase compared to the standard (Kg)	Average Cumulative yield per acre (Kg)	Average Cumulative yield per acre (Boxes)	% increase compared to the standard (Kg)
1	9,282 1,274	227 31	629	68,068 31,486	1,668 771	116
1	2,129 946	52 23	125	2,129 946	52 23	125
1		0 0	#DIV/0!		0	#DIV/0!
2	7,644 1,274	187 31	500	63,336 31,486	1,552 771	101
2	13,431 11,253	329 276	19	63,404 52,393	1,553 1,284	21
2		0 0	#DIV/0!		0 0	#DIV/0!
3	7,800 6,720	191 165	16	25,320 21,600	620 529	17
3	2,746 2,236	67 55	23	4,325 3,232	106 79	34
3	340 226	8 6	50	340 226	8	50
3		0 0	#DIV/0!		0 0	#DIV/0!
4	2,953 3,056	72 75	-3	8,236 5,413	202 133	52
4	2,333 2,236	57 55	4	3,548 3,232	87 79	10
4	602 251	15 6	140	602 251	15 6	140
5	3,652 3,056	89 75	20	8,003 5,413	196 133	48

5	2,227	55	91	3,885	95	58
5	1,166	29	91	2,460	60	50
F	2,163	53	2	3,937	96	22
5	2,236	55	-3	3,232	79	22
-	2057	50	447	2057	50	447
5	946	23	117	946	23	117
C C	4,040	99	22	9,816	240	01
6	3,056	75	32	5,413	133	81
C C	3,480	85	20	6,177	151	
6	2,523	62	38	3,724	91	66
7	6,916	169	4.42	58,058	1,422	0.4
7	1,274	31	443	31,486	771	84
_	8,954	219	400	18,513	454	50
7	4,477	110	100	12,342	302	50
_	2293	56	112	2293	56	4.42
7	946	23	142	946	23	142
_		0			0	
7		0	#DIV/0!		0	#DIV/0!
<u>_</u>	8,190	201	5.40	60,060	1,471	04
8	1,274	31	543	31,486	771	91
_	6,655	163	10	14,883	365	24
8	4,477	110	49	12,342	302	21
0	4,186	103	-	6,006	147	10
9	4,004	98	5	5,460	134	10
0	2,227	55	27	5,310	130	2
9	3,056	75	-27	5,413	133	-2
10	2,202	54	20	7,666	188	40
10	3,056	75	-28	5,413	133	42
10	2,381	58	C	3,961	97	22
10	2,236	55	6	3,232	79	23
10	753	18	200	753	18	200
10	251	6	200	251	6	200
11	3,289	81	Q	7,071	173	21

±±	3,056	75	o	5,413	133	ЭT	
11	3,167	78	26	5,133	126	20	
11	2,523	62	26	3,724	91	38	
11		0	#DIV/0!		0	#DIV/0!	
11		0	#DIV/0!		0	#DIV/0!	
12	8,554	210	571	64,246	1,574	104	
12	1,274	31	571	31,486	771	104	
13	6,370	156	59	8,372	205	53	
12	4,004	98	59	5 <i>,</i> 460	134	53	
14	3,574	88	17	7,718	189	43	
14	3,056	75	17	5,413	133	45	
14	1,628	40	-27	3,499	86	8	
14	2,236	55	-27	3,232	79	0	
14		0	#DIV/0!		0	#DIV/0!	
14		0	#DIV/0!		0	#DIV/0!	
15	4,092	100	34	8,625	211	59	
15	3,056	75	54	5,413	133	55	
15	2,675	66	183	2,675	66	183	
15	946	23	102	946	23	103	
16	3,807	93	25	8,547	209	58	
10	3,056	75	25	5,413	133	50	
17	3,704	91	21	7,770	190	44	
±7	3,056	75	21	5,413	133	44	

Breeder Ranking of Nominated Rootstock	Average Annual Yield per Plot (Kg)*	Average Annual Yield per Plot (Boxes)*	Average Cumulative Yield per Plot (Kg)	Average Cumulative Yield per Plot (Boxes)		Annual Pound Solids per Acre *	Cumulative Pound Solids Per Acre
1						885	6,489
1						119	2,948
1							
1							
						708	5 <i>,</i> 868
2						119	2,948
2						1143	5,394
۷.						1001	4,662
2							
	195		633		10.35	885	2,872
3	168		540		11.31	765	2,459
3							
3							
3							
4					4.33	317	886
4					4.56	272	482
4							
4							
					6.07	386	845
5					4.56	272	482

5					
3					
5					
5					
_					
5					
			4.43	388	943
6			4.56	272	482
6					
				678	5,691
7				119	2,948
				115	2,540
7					
7					
7					
8				793	5,814
				119	2,948
8					
J					
9				438	628
9				391	533
0			3.61	213	509
9			4.56	272	482
10			3.66	229	798
10			4.56	272	482
10					
10					
			5.23	324	697
11			5.25	524	037

11			4.56	272	482
11					
11					
				826	6,203
12				119	2,948
13				680	894
12				391	533
14			6.00	333	719
<u> </u>			4.56	272	482
14					
14					
			6.78	398	839
15			4.56	272	482
15					
10			5.19	356	800
16			4.56	272	482
17			5.07	354	743
1/			4.56	272	482

Breeder Ranking of Nominated Rootstock	Fruit Size (g) *	Annual Brix*	Annual Acid *	Annual Ratio *	Percent juice	Annual Pound Solids per Box *	% increase compared to the standard (Pound Solids per box)
1	194	8.67	0.61	14.2		3.90	1.82767624
	160	8.51	0.64	13.2		3.83	
1							#DIV/0!
1							#DIV/0!
2	190	8.43	0.62	13.6		3.79	4.044206422
2	160	8.51	0.64	13.2		3.83	-1.044386423
2		7.74	0.73	10.8		3.48	-4.395604396
2		8.09	0.80	10.5		3.64	-4.595004590
2							#DIV/0!
3	212	9.41	0.76	12.5	54.8	4.64	0.420404540
3	213	9.19	0.74	12.5	56.3	4.66	-0.429184549
3							#DIV/0!
3							#DIV/0!
3							#DIV/0!
	160	0.14	0.76	12.0	53.5	4.40	
4	160 174	9.14 7.74	0.76 0.65	12.0 11.9	53.5	3.64	20.87912088
	1/4	/./4	0.05	11.7	52.5	5.04	
4							#DIV/0!
4							#DIV/0!
F	180	8.61	0.72	12.0	55.8	4.32	18.68131868
5	174	7.74	0.65	11.9	52.3	3.64	10.00131808

	1	-		-			
5	227						#DIV/0!
-	193						,
5							#DIV/0!
5							#DIV/0!
	175	8.20	0.70	11.7	53.2	3.93	
6	175	7.74	0.70	11.7	52.3	3.64	7.967032967
	210	7.74	0.05	11.5	52.5	5.04	
6	210						#DIV/0!
	190	8.90	0.62	14.4		4.01	
7	160	8.50	0.62	13.2		3.83	4.699738903
	100	0.51	0.01	10.2		5.05	
7							#DIV/0!
7							#DIV/0!
7							#DIV/0!
	193	8.80	0.62	14.1		3.96	
8	160	8.51	0.64	13.2		3.83	3.394255875
0							
8							#DIV/0!
9	141	9.7	0.63	15.3	49.0	4.28	7.268170426
9	135	8.7	0.59	14.8	51.0	3.99	7.208170420
9	197	8.13	0.71	11.5	53.6	3.92	7.692307692
5	174	7.74	0.65	11.9	52.3	3.64	7.052507052
10	183	8.74	0.74	11.8	54.2	4.26	17.03296703
	174	7.74	0.65	11.9	52.3	3.64	17.002507.05
10							#DIV/0!
							,
10							#DIV/0!
_							,
11	196	8.20	0.75	10.9	54.6	4.03	10 71/02571

11	174	7.74	0.65	11.9	52.3	3.64	10./14203/1	
11							#DIV/0!	
11							#DIV/0!	
12	185	8.77	0.65	13.4		3.95	3.133159269	
12	160	8.51	0.64	13.2		3.83	5.155159209	
13	151	9.9	0.63	15.8	49.0	4.37	9.523809524	
15	135	8.7	0.59	14.8	51.0	3.99	9.323809324	
14	188	8.13	0.69	11.8	52.1	3.81	4.67032967	
14	174	7.74	0.65	11.9	52.3	3.64	4.07052907	
14							#DIV/0!	
14							#DIV/0!	
45	195	8.08	0.66	12.2	54.7	3.98	0.240650244	
15	174	7.74	0.65	11.9	52.3	3.64	9.340659341	
15							#DIV/01	
							#DIV/0!	
16	169	8.14	0.72	11.3	52.3	3.83	5.21978022	
10	174	7.74	0.65	11.9	52.3	3.64		
17	168	8.17	0.70	11.7	53.2	3.91	7.417582418	
17	174	7.74	0.65	11.9	52.3	3.64		