Control citrus Huanglongbing (HLB) by counteracting the SA hydroxylase of Candidatus Liberibacter asiaticus

Control citrus Huanglongbing (HLB) by counteracting the SA hydroxylase of Candidatus Liberibacter asiaticus

Report Date: 10/06/2017
Category: ACP Vector

Sponsor: Citrus Research and Development Foundation

The goal of this project is to develop management strategies which boost natural defense mechanisms to control Huanglongbing (HLB) disease by counteracting salicylic acid (SA) hydroxylase of Ca. Liberibacter asiaticus (Las). This project contains two objectives: 1) Control HLB by optimization of application of SA and its analogs. We are testing the control effect of SA and its analogs, e.g., ASM, Imidacloprid, DL-2-aminobutyric, 2,6-dichloro-isonicotinic acid, and 2,1,3 Benzothiadiazole via trunk injection in field trial. Oxytetracycline is used as a positive control, whereas water was used as a negative control. SA, Acibenzolar-S-methyl (ASM), benzo (1,2,3) thiadiazole-7-cabothionic acid S-methyl ester (BTH), and 2,6-dichloroisonicotinic acid (INA) have also been applied twice onto selected trees by foliar spray in November, 2015 during fall flush, arch 2016 during spring flush, and February 2017 during spring flush. In addition, three field trials for different compounds including SA are being conducted. Materials were applied once onto selected trees by foliar spray in September, 2016 during late summer-fall flush, were applied to selected trees by soil drench in September, 2016 during late summer-fall flush, in early March and June 2017. Trunk injection in August and September, 2016 during summer and late summer-fall flush. Trunk injection of SA showed significant control effect against HLB. The data for trunk injection has been collected and a manuscript has been submitted for publication. HLB disease severity,disease incidence surveys and Las titers were conducted before spray treatment in October, 2015 and at 6 months after the 1st application in April, 2016 and April 2017. To compare the effect of suppressing SA hydroxylase, we also screened multiple SecA inhibitors which suppress the secretion of important virulence factors. Two effective SecA inhibitors have been tested in vitro. At least one SecA inhibitor has been shown to be specific against Las, but not E. coli. We are also investigating the possibility of modifying pathway of citrus to produce more SA in citrus using CRISPR. One manuscript entitled: “Control of Citrus Huanglongbing (HLB) via Trunk Injection of Plant 1 Activators and Antibiotics” has been accepted for publication by Phytopathology. 2) Control HLB using a combination of SA, SA analogs or SA hydroxylase inhibitors. The SA hydroxylase protein is being expressed in E.coli and purified. Several inhibitors identified using structure based design are being tested for their inhibitory effect against SA hydroxyalse. To further identify SA hydroxylase inhibitors or SA analogs that are not degraded by SA hydroxylase, we have expressed SA hydroxylase in tobacco and Arabidopsis. Overexpression of SA hydroxylase decreased HR induced by Pseudomonas spp, indicating that SA hydroxylase degrades SA. We have qualified SA with HPLC and conducted SAR related genes expression analysis. We have identified multiple SA analogs and tested whether they can be degraded by SA hydroxylase. One manuscript entitled: ‘Candidatus Liberibacter asiaticus’ Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses” has been published by MPMI.


Your browser does not support pdfs, click here to download the file.