Evaluation of the control effect of bactericides against citrus Huanglongbing via trunk injection

Evaluation of the control effect of bactericides against citrus Huanglongbing via trunk injection

Report Date: 05/17/2022
Project: 18-064   Year: 2022
Category: Horticultural & Management
Author: Nian Wang
Sponsor: Citrus Research and Development Foundation

 Objective 1. To illustrate whether application of bactericides via trunk injection could efficiently manage citrus HLB and how bactericides via trunk injection affects Las and HLB diseased trees. 1.1.          Determination of the in planta minimum bactericidal concentrations (MBCs) of bactericides against LasWe developed a new method for evaluating the effects of oxytetracycline (OTC) treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value = 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ~0.17 and ~0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.We investigated the in planta minimum bactericidal concentrations of streptomycin (STR) and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold =36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management. 1.2.          Effect of bactericides via trunk injection on citrus HLB disease progression, tree health, yield and fruit quality in different aged trees with a different disease severityThe field experiments were performed at four different groves on different aged trees with a different disease severity. They are one located in Avon Park, FL,  3-year old Valencia trees; one in Bartow, FL, 2-year old W. Murrcot trees; and one in  Auburndale, FL, 7-year old Hamlin  trees (planted in 02/2012). The last one is in CREC-, Lake Alfred, FL, 20-year old Hamlin trees. The HLB disease severity and tree size (canopy volume and trunk diameter) in the four groves were estimated immediately prior to treatment application. For the field tests, the experiment design is a randomized complete block design (RCBD) for 9 treatments, including 6 injection treatments (3 different doses for OTC or STR), 2 spray treatments (OTC or STR spraying), and one No treatment as a negative control. Each injection treatment consisted of 9 or 15 trees divided into 3 blocks of 3 or 5 trees each. Each spray treatment consisted of 30 trees divided into 3 blocks of 10 trees each. For all the four field trials, the injection treatment applications were completed by the end of April 2019. The 1st application of spray treatments were completed during spring flushing in February or March 2019, the 2nd applications were conducted in late June to early July 2019, and the 3rd applications were conducted in early to middle October 2019. Leaf samples have been collected from the treated trees at the following time points: 0 (pre- injection), 7, 14, 28 days, 2, 4, 6, 8, 10 and 12 months after treatment (MPT). Our data demonstrate that for 6-year-old trees, 2.0 g OTC/tree, but not 1.0 g OTC /tree via trunk injection significantly reduced CLas titers. However, neither concentrations reduced CLas titers for 22-year-old trees. Spray had no effect on CLas titers. STC at 1 g or 2 g/tree via trunk injection had no effect on CLas titers.  OTC (2.0 g/tree) and STR (2.0 g/tree) but not at lower concentrations significantly increased fruit yield, but had no effect on quality.  Objective 2. To examine the dynamics and residues of bactericide injected into citrus and systemic movement within the vascular system of trees and characterize the degradation metabolites of bactericides in citrus. Residues of OTC or STR in fruit harvested from 22-year old Hamlin sweet orange trees injected with OTC or STR at different doses were determined. Injections were conducted in February-March 2021 and fruit was harvested in January 2022. Neither OTC or STR was detected at 1 g or 2 g/tree via trunk injection.Residue of OTC or STR in fruit harvested from 6-year old Hamlin sweet orange trees injected with OTC or STR at different doses were determined. Injections were conducted in March 2021 and fruit was harvested in January 2022.   The following residues were observed: OTC (1.0 g/tree): 0.08 ppm ± 0.03; OTC (2.0 g/tree): 0.19 ppm ± 0.07, STR (1.0 g/tree): 0.09 ppm ± 0.03; STR (2.0 g/tree): 0.17 ppm ± 0.08.  Objective 3. To determine whether trunk injection of bactericides could decrease Las acquisition by Asian citrus psyllids (ACP)Twenty 1.5-year old citrus (Valencia sweet orange) plants were graft-inoculated by Las carrying buds in February 2020. These plants are being tested for Las infection and 4 plants were confirmed with Las infection (Ct values are between 34.0 and 35.0) at 4 months after grafting. They will be subjected to OTC or STR treatment by trunk injection and ACP acquisition access for 7 to 14 days. We have determined the time points to test OTC and STR treatment on ACP acquisition of Las. We have conducted the test regarding how trunk injection of OTC affect ACP acquisition of Las. OTC significantly reduced ACP acquisition of Las.  Objective 4. To monitor resistance development in Las against bactericides and evaluate potential side effects of trunk injection of bactericides Monitoring resistance development in Las against bactericides. Leaf samples for this test have been collected from 5 trees injected with OTC and 5 trees injected with STR at the highest doses in each of the three groves at 6 and 9 months after the injection, respectively. PCR-sequencing analysis on Las 16SrRNA gene showed there was no mutation compared with the reported sequence. However, accurate evaluation needs to be conducted once CLas is cultured. No obvious side effects were observed at low OTC or STR concentrations. However, at some high concentrations, phytotoxicity was observed on leaves.            


Your browser does not support pdfs, click here to download the file.