Evaluation of the control effect of bactericides against citrus Huanglongbing via trunk injection

Evaluation of the control effect of bactericides against citrus Huanglongbing via trunk injection

Report Date: 11/08/2020
Project: 18-064C   Year: 2020
Category: Horticultural & Management
Author: Nian Wang
Sponsor: Citrus Research and Development Foundation

Objective 1. To illustrate whether application of bactericides via trunk injection could efficiently manage citrus HLB and how bactericides via trunk injection affects Las and HLB diseased trees. 1.1.          Determination of the in planta minimum bactericidal concentrations (MBCs) of bactericides against LasThis has been completed for both streptomycin and oxytetracycline against Las.  A manuscript entitled: “Residue dynamics of streptomycin in citrus delivered by foliar spray and trunk injection and effect on Candidatus Liberibacter asiaticus titer” was submitted to Phytopathology for publication.1.2.          Effect of bactericides via trunk injection on citrus HLB disease progression, tree health, yield and fruit quality in different aged trees with a different disease severityThe field experiments were performed at four different groves on different aged trees with a different disease severity. They are one located in Avon Park, FL,  3-year old Valencia trees; one in Bartow, FL, 2-year old W. Murrcot trees; and one in  Auburndale, FL, 7-year old Hamlin  trees (planted in 02/2012). The last one is in CREC-, Lake Alfred, FL, 20-year old Hamlin trees. The HLB disease severity and tree size (canopy volume and trunk diameter) in the four groves were estimated immediately prior to treatment application. For the field tests, the experiment design is a randomized complete block design (RCBD) for 9 treatments, including 6 injection treatments (3 different doses for OTC or STR), 2 spray treatments (OTC or STR spraying), and one No treatment as a negative control. Each injection treatment consisted of 9 or 15 trees divided into 3 blocks of 3 or 5 trees each. Each spray treatment consisted of 30 trees divided into 3 blocks of 10 trees each. For all the four field trials, the injection treatment applications were completed by the end of April 2019. The 1st application of spray treatments were completed during spring flushing in February or March 2019, the 2nd applications were conducted in late June to early July 2019, and the 3rd applications were conducted in early to middle October 2019. Leaf samples have been collected from the treated trees at the following time points: 0 (pre- injection), 7, 14, 28 days, 2, 4, 6, 8, 10 and 12 months after treatment (MPT). The estimation of Las titers in these leaf samples are ongoing with qPCR assays. The first estimation of HLB disease severity and growth performance (height, trunk diameter, and canopy volume) of immature trees after treatment were performed in May 2019 (three months after the injection) and continued in a 3-months interval. Fruit yield and quality data were collected for the Bartow trial (W. Murrcot), Auburndale trial (Hamlin), and CREC trial (Hamlin) in January 2020. Fruit yield was estimated for the Avon Park trial (Valencia) in April 2020. Leaf samples were collected for Las population and antibiotic residue assays for those trials.  Objective 2. To examine the dynamics and residues of bactericide injected into citrus and systemic movement within the vascular system of trees and characterize the degradation metabolites of bactericides in citrus. Leaf and root samples have been collected from OTC or STR treated trees in the Avon Park grove at the following time points:0 (pre- injection), 2, 4, 7, 14, 28 days, 2, 4, 6,  8, 10, and 12 months after injection. The samples have been processed for OTC or STR extraction, and the concentrations of OTC and STR in these samples were determined by HPLC assays. Fruit samples were collected for the Bartow trial (W. Murrcot), Auburndale trial (Hamlin), and CREC trial (Hamlin) during harvest in January 2020, and for the Avon Park trial (Valencia) in April 2020. The samples were processed for OTC or STR extraction, and the concentrations of OTC and STR in these samples were determined by HPLC assays. We have collected data for 60 and 360 days post treatment. Objective 3. To determine whether trunk injection of bactericides could decrease Las acquisition by Asian citrus psyllids (ACP)Twenty 1.5-year old citrus (Valencia sweet orange) plants were graft-inoculated by Las carrying buds in February 2020. These plants are being tested for Las infection and 4 plants were confirmed with Las infection (Ct values are between 34.0 and 35.0) at 4 months after grafting. They will be subjected to OTC or STR treatment by trunk injection and ACP acquisition access for 7 to 14 days. This experiment is ongoing. Objective 4. To monitor resistance development in Las against bactericides and evaluate potential side effects of trunk injection of bactericides Monitoring resistance development in Las against bactericides. Leaf samples for this test have been collected from 5 trees injected with OTC and 5 trees injected with STR at the highest doses in each of the three groves at 6 and 9 months after the injection, respectively. PCR-sequencing analysis on Las 16SrRNA gene showed there was no mutation compared with the reported sequence. We are further confirming the results. Evaluation of potential side effects of trunk injection of bactericides have been completed.        


Your browser does not support pdfs, click here to download the file.