Understanding the underlying biology of citrus black spot for improved disease management

Understanding the underlying biology of citrus black spot for improved disease management

Report Date: 12/21/2021
Project: 18-006   Year: 2021
Category: Other
Author: Megan Dewdney
Sponsor: Citrus Research and Development Foundation

September 2021Objective 1:  Evaluate the optimal spray timing for Florida and investigate if tree skirting or alternative products improves fungicidal control of citrus black spot.Objective 3:  A MAT-1-1 isolate may enter Florida and allow for the production of ascospores.  The industry needs to know if this happens, as it will affect management practices.  Additionally, the existing asexual population may be more diverse than currently measured.  If multiple clonal linages exist, then there may be different sensitivities to fungicides or other phenotypic traits.  We also need to determine whether P. paracitricarpa or P. paracapitalensis are present in Florida for regulatory concerns due to misidentification.  We plan to survey for the MAT-1-1 mating type, unique clonal lineages, and two closely related Phyllosticta spp.  A skirting and fungicide timing trial was conducted during two different years (2019-2020 and 2020-2021) in a commercial citrus grove located in Southwest Florida. This study aimed to evaluate the optimal timing for fungicide application and investigate if skirting pruning helps reducing citrus black spot (CBS) incidence and severity under field conditions. It is a split-plot design with skirting as the main plot and fungicide treatments as the minor plot.  Our preliminary results showed no statistical differences in disease incidence among the application timing treatments in both seasons. However, disease incidence by tree was much higher in 2020-2021 compared to the 2019-2020 seasons likely due to favorable environmental conditions. In the same study, evaluation of disease severity relied on the area fruit affected by CBS symptoms. There was no statistical difference between the fungicide treatments nested within skirting and non-skirting plots during the 2019-2020 season when the severity was evaluated by tree. However, in the 2020-2021 season, a statistical difference was found between fungicide treatments and untreated control when the disease pressure was substantially higher. In the non-skirted trees, only the Florida standard (FLS) treatment was statistically different from our untreated control.  The Early and Late application treatments showed no statistical difference when compared to the untreated control or FLS. Within all skirted plots, fungicide timing treatments showed statistical differences compared to the untreated control, but not among them. Therefore, our results provide evidence for the best timing for the fungicide applications on the disease severity and confirms that tree skirting has a minor effect on disease control when we evaluate the data by tree.  We are still working on a new analysis to see if there is a significant difference among the treatments when we evaluate the incidence and disease data by fruit rather than tree.  We have been delayed because our statistical consultant has been difficult to contact but hope that it will be easier in the new year.  There may be a difference when we change the scale of how we analyze the data.  We are also examining the weather data from both seasons to see what factors rainfall and temperature may have played. In April and May, we prepared the fungicide trial. Trees were selected for chemical application based on disease severity levels, confirming presence and quality of selected trees in the field, and labeling selected trees along with warning signs in the area. Fifteen treatments were selected.  Each treatment has five replicates of three trees and were blocked according to disease severity according to randomized block design. Beginning from late May to currently, there has been a monthly (every four weeks) fungicide application the chemical treatments, and there will be a total of six applications of each treatment, from May to October. The final chemical application was conducted in October. The trees are periodically observed for symptoms and ripening but data collection is anticipated to occur in March.  Additionally, trees are being relabelled due to label weathering, to ensure organization and visibility in preparation for disease rating. Evaluation of the second season of trials, in which different fungicide products were tested for their efficacy to protect citrus fruit from CBS infection, was recently concluded. Products tested include Enable (Indar) and Luna Experience sprayed on their own as well as Copper hydroxide sprayed in alternation with either Amistar Top or Headline (Cabrio). Fungicides were applied every 4 weeks from October 2020 until March 2021, in a Valencia orange orchard with a history of CBS. Data analysis is currently under way. An additional 8 South African and 8 global (from Argentina and Swaziland) isolates have been sequenced. As the next-generation sequencing data becomes available, the analysis and results are continuously updated to include the new data. DNA from 16 isolates (Argentina, Australia, Brazil and China) passed QC and is in the process of being sequenced. More isolates from Brazil and China are being cultured for DNA extraction and sequencing. Sixty-five P. citricarpa isolates (36 from South Africa, representing the five provinces where CBS is found, and 29 from other countries, Argentina, Australia, Brazil, China, Eswatini and USA) have been sequenced. Sequence data for 6 isolates, 1 from China, 1 from Brazil and 4 from USA are in the process of being generated. The sequencing data for the 65 isolates were analysed in the same manner as previously described, namely read mapping and variant calling, and in silico genotyping. Both analyses approaches showed the same patterns in terms of genetic distribution of isolates. Isolates from China are the most genetically distinct, while there are different degrees of genetic connectivity between isolates from Argentina, Australia, Brazil, Eswatini, USA and those form South Africa, and corresponds with previously published results (Carstens et al., 2017). Objective 3 (Survey for the MAT-1-1 mating type and two closely related Phyllosticta spp.). Our studies on the diversity of Phyllosticta spp. associated with citrus in Florida have continued. Our collection of P. citricarpa isolates were obtained from citrus fruit in different areas under quarantine from 2010 to 2020. These isolates were previously screened by morphology to remove nonpathogenic P. capitalensis isolates. We have now screened the majority of the remaining 202 isolates using molecular techniques to determine if we have cryptic species that may have been misidentified as P. citricarpa. To date we have screened 168 isolates by amplifying and DNA sequencing the tef-1a (Translation elongation factor-alpha) locus.  A few isolates were rescreened to confirm conclusions but the data is being organized and prepared for publication.  The screen revealed that two isolates (Gc-6 and Gc-7) match to a Phyllosticta species not previously reported in association with citrus. The best sequence match based on ITS and tef-1a is to a species reported previously as a pathogen on a member of the Amaryllidaceae family (Hymenocallis littoralis) in Australia. Numerous inoculations of citrus have determined that these isolates do not cause citrus black spot. A thrid leaf inoculation on Hymenocallis species are underway but preliminary evidence appears to show that the results will be the same. These studies indicate that these isolates are P. hymenocallidicola and infection studies indicate that they are pathogenic on spider lilly (Hymenocallis sp.). Vegetative and sexual compatibility assays (sandwich mating) confirm that Gc6 and Gc-7 isolates are heterothallic and belong to the same mating type, as neither isolate was a capable of producing pseudothecia in solo cultures or in paired cultures with one another. Characterization of the tef-1a sequence from the remaining isolates in our collection screening and further characterization of these new species is continuing to obtain robust information on the diversity of Phyllosticta species and determine the presence of cryptic species in Florida.We screened an additional 12 P. citricarpa isolates for mating-type (MAT1-1 and MAT1-2). Only the MAT1-2-1 mating type has been detected in new isolates collected in 2020. We conclude that the MAT1-1 mating type is still absent in the Floridian population. To determine the phenology of fruit susceptibility inoculation studies of citrus fruit (Meyer lemon) were performed in a quarantine greenhouse at the Florida Department of Agriculture and Consumer Services (DPI) in Gainesville. A total of 97 fruit were used in this experiment. Of these 97 fruits, 25 served as controls and 72 were inoculated with the Gc-12 isolate of P. citricarpa. Disease assessments were performed weekly for a full calendar year. A total of 50 fruit produced symptoms in this period. All 50 were from fruit inoculated with the Gc-12 isolate, and no symptoms were observed in the control treatment. Therefore, from all inoculated citrus fruit, 69.4% produced symptoms, and 30.5% remained asymptomatic. The indications from this one experiment suggest that citrus fruit are susceptible at all stages of their development regardless of their maturation time. A second trial was planned for 2021 to determine the period of fruit susceptibility to P. citricarpa but the trees only recently flowered and the fruitlets are not yet ready for inoculation.  


Your browser does not support pdfs, click here to download the file.